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Abstract. We introduce the twisted super Yangian Ys
ı of quasi-split type A in the Drinfeld current presentation

for an arbitrary symmetric parity sequence s. We prove via Gauss decomposition that the twisted super Yangian
Ys

ı is isomorphic to the (special) twisted super Yangian Ys, previously defined via the R-matrix presentation.
As a corollary, we prove that the twisted super Yangians Ys

ı corresponding to different parity sequences are
isomorphic. Additionally, we establish the PBW theorem for Ys

ı and describe the center of Ys in terms of
Gaussian generators, thereby generalizing known results for the nonsuper quasi-split type A case.
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1. Introduction

Inspired by Cherednik’s scattering theory for factorized particles on the half-line [Che84], Sklyanin [Skl88]
introduced a class of algebras defined by reflection equations in the FRT formalism [RTF89], leading to the
construction of quantum integrable systems with boundary conditions via the quantum inverse scattering
(R-matrix) method. The reflection equations are central to constructing the commutative Bethe subalgebra,
ensuring the integrability of the associated integrable systems with boundary conditions.

Twisted Yangians are coideal subalgebras of Yangians associated to symmetric pairs. They are in general
quotients of reflection algebras by symmetry or unitary relations. A first example of twisted Yangians is
due to Olshanski [Ols92] who constructed twisted Yangians of types AI and AII in R-matrix presentation.
These algebras are closely related to representations of classical Lie algebras [Mol07]. Recently, Bethe
vectors and recurrence relations for open spin chains, whose symmetry is described by Olshanski’s twisted
Yangians, were uniformly studied in [Reg23]; see also references therein. The R-matrix construction of
twisted Yangians was later extended to type AIII [MR02] and to symmetric pairs of classical types [GR16].
Additionally, a construction of twisted Yangians for general symmetric pairs via Drinfeld’s J-presentation
has emerged as boundary remnants of Yangians in 1+1D integrable field theories [Mac02].

In this article, we continue our study for a special case of reflection superalgebras, referred to as twisted
super Yangians of quasi-split type A; cf. [Lu23b, LZ24]. These twisted super Yangians are super analogues
of the reflection algebra introduced in [MR02]; cf. also [CGM14]. They are associated with supersymmetric
pairs of type AIII, while the twisted super Yangians of types AI and AII were previously introduced in
[BR03].
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The twisted super Yangians of type AIII (also known as reflection superalgebras) have appeared in the
study of open spin chains with diagonal boundary conditions, employing both analytic and algebraic Bethe
ansatz approaches [RS07,BR09]. Moreover, the (super)trace formula [TV13] of Bethe vectors and the Bethe
ansatz equations were obtained in [BR09]. Twisted super Yangians in standard parity sequence (with specific
diagonal boundary matrices) were further investigated in [Ket23, BK24] where some basic properties of the
superalgebras were established. In our prior work [Lu23b], we worked on twisted super Yangians in R-matrix
presentation associated to arbitrary parity sequences and arbitrary diagonal boundary matrices, established
a highest weight representation theory under the general situations, classified finite-dimensional irreducible
representations for certain cases (cf. [MR02]), and extended the Schur-Weyl type duality between degenerate
affine Hecke algebras of type BC and twisted super Yangians (cf. [CGM14]).

The goal of this paper is to introduce a Drinfeld type presentation for twisted super Yangians of quasi-split
type A, associated with arbitrary symmetric parity sequences, and to generalize the joint work with Weinan
Zhang [LZ24] to the super case. We establish an explicit isomorphism between twisted super Yangians in
R-matrix and Drinfeld presentations via Gauss decomposition; cf. [BK05, JLM18, FT23, LWZ23, Mol24].

A new feature of Lie superalgebras is the existence of multiple nonisomorphic Dynkin diagrams. For type
A case, these Dynkin diagram can be effectively described by a parity sequence s. We then consider the
general linear Lie superalgebra glsm|n where s = (s1, . . . , sm+n) is a parity sequence such that si = ±1 and
the occurrence of 1 is exactly m.

A supersymmetric pair (glsm|n, k
s
m|n) is of quasi-split type if ksm|n is the fixed point subalgebra of an

involution θ = ω ◦ τ , where τ is an (nontrivial) involution of the underlying Dynkin diagram and ω is the
Cartan involution. In the type A case, a nontrivial τ is uniquely given by τi = m+n− i, enforcing symmetry
in the Dynkin diagram of glsm|n, meaning that nodes i and m+ n− imust have the same parity. In the present
paper, we consider all such Dynkin diagrams with one natural restriction: if τi = i (which occurs only if
m + n is even), then the node i has to be even; see [SW24, Def. 2.3 & Ex. 4.9]. All such Dynkin diagrams
are described by the symmetric parity sequences. Here a parity sequence s is symmetric if si = sm+n+1−i.

For a symmetric parity sequence s, we introduce a superalgebra Ys
ı , referred to as a twisted super Yangian

in Drinfeld presentation (see Definition 2.1). These superalgebras are super analogues of twisted Yangians
introduced in [LZ24]. We then establish an explicit isomorphism between the new superalgebras and the
twisted super Yangians Ys in R-matrix presentation. Our approach utilizes the well studied Gauss decompo-
sition method, extensively employed to provide explicit isomorphisms between Yangians and quantum affine
algebras of classical types in R-matrix and Drinfeld presentations, including the supersymmetric setting
[BK05, Gow07, Pen16, JLM18, FT23, Mol24].

In contrast to the type AI case, where the relations between Gaussian generators are twisted analogues
of [BK05], the quasi-split type A (or quasi-split type AIII) closely resembles the classical type BCD cases
investigated in [JLM18,FT23,Mol24]. By carefully modifying the R-matrix presentation, the super Yangian
of type A can be naturally regarded as a subalgebra of twisted super Yangians by focusing on the upper left
half of the generating matrix of the twisted super Yangians Ys. Consequently, many relations can be directly
adapted from [Gow07, Pen16, Tsy20]. However, a nontrivial rank reduction homomorphism is crucial for
effectively reducing the calculation of new relations to small rank cases. We establish the rank reduction
homomorphism (actually embedding) in Proposition 4.3 by employing techniques from [JLM18]; see also
[LZ24, Prop. 6.3]. Unlike the orthosymplectic Yangians, this technique works well in the super setting as
R(u) (Yang’s rational R-matrix) does not have singularities at s1 (cf. [FT23, Mol24]). Consequently, we
achieve our main result, an explicit isomorphism between twisted super Yangians in Drinfeld and R-matrix
presentations; see Theorem 5.1. Meanwhile, we obtain a PBW theorem for the twisted super Yangians in
current generators for both presentations; see Corollary 5.2 and Theorem 5.3.

The twisted super Yangians in R-matrix presentation possess nontrivial centers, and constructing these
centers (Sklyanin superdeterminant) in terms of R-matrix generators remains open due to the absence of one-
dimensional modules in tensor products of natural representations. Nevertheless, we construct a central series
Ber s(u) (termed quantum Berezinian, cf. [Naz91]) using the Cartan current from the Gauss decomposition
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in (5.6) and generalize [LZ24, Thm. 6.19]. Interestingly, the shifts and formulas for the central series mirror
those in the nontwisted case; see [Gow07, Tsy20, HM20, CH23].

The twisted super Yangians Ys
ı associated with different parity sequences s that share the same m and n

are isomorphic. This fact, though nontrivial in terms of Drinfeld presentation, is naturally apparent for Ys in
R-matrix presentation, as the superalgebras are isomorphic via index permutation. As a corollary of our main
result, we show that Ys

ı for different s are indeed isomorphic; see Theorem 5.7 and cf. [Tsy20]. Moreover,
the central series Ber s(u) remains invariant under the permutation isomorphisms of Ys, extending results
from [HM20, CH23] to the twisted case; see Theorem 5.11.

The Gauss decomposition approach should also apply to twisted Yangians of classical type introduced in
[GR16], although some modifications in the presentation might be necessary. It is natural to anticipate that
these results can be extended to their q-analogues (cf. [LWZ24b]), as has been successfully done for the type
AI case in [Lu23a]. Notably, there are no split types in the supersymmetric case, making the quasi-split type
the natural first case to study in the supersymmetric setting.

The paper is organized as follows. In Section 2, we introduce the twisted super Yangians in Drinfeld
presentations and study their basic properties. Section 3 is devoted to a review of super Yangians and twisted
super Yangians in R-matrix presentations. We investigate the Gauss decomposition of the generating matrix
of twisted super Yangians and establish the rank reduction homomorphism in Section 4. Basic symmetries
for the Gaussian generators are also discussed. We formulate and prove our main results in Section 5. In
Section 6, we verify the relations in small ranks which are crucial to the proof of our main results.
Acknowledgement. The author thanks Yaolong Shen and Weiqiang Wang for stimulating discussions on
quantum supersymmetric pairs, and Weinan Zhang for collaborations on nonsuper case. The author is
partially supported by Wang’s NSF grant DMS–2401351.

2. Twisted super Yangians in Drinfeld presentation

2.1. Lie superalgebra. Throughout the paper, we work over C. In this subsection, we recall the basics of
the general linear Lie superalgebra, see e.g. [CW12] for more detail.

A vector superspace W = W0̄ ⊕W1̄ is a Z2-graded vector space. We call elements of W0̄ even and
elements ofW1̄ odd. We write |w| ∈ {0̄, 1̄} for the parity of a homogeneous elementw ∈W . Set (−1)0̄ = 1

and (−1)1̄ = −1.
Fix m, n ∈ Z⩾0 and denote N = m + n. Set I0 := {1, 2, . . . , N − 1} and I := {1, 2, . . . , N}. For each

i ∈ I, set i′ := N + 1− i.
Denote by Sm|n the set of all sequences s = (s1, s2, . . . , sN ) where si ∈ {±1} and 1 occurs exactly m

times. Elements of Sm|n are called parity sequences. We call a parity sequence symmetric if si = si′ for all
i ∈ I. There exists at least one symmetric parity sequence in Sm|n if and only if mn is even.

Fix a parity sequence s ∈ Sm|n and define |i| ∈ Z2 for i ∈ I by si = (−1)|i|.
It is well known that there are different nonconjugate root systems of the general linear Lie superalgebra

glm|n and they are parameterized by parity sequence in Sm|n.
The Lie superalgebra glsm|n is generated by elements eij , i, j ∈ I, with the supercommutator relations

[eij , ekl] = δjkeil − (−1)(|i|+|j|)(|k|+|l|)δilekj ,

where the parity of eij is |i| + |j|. Since m and n can be determined from s, we simply write glsm|n as gls.
The Lie superalgebra sls is the Lie subalgebra of gls spanned by the vectors eij and sieii − sjejj for i, j ∈ I
such that i ̸= j.

The Cartan subalgebra h of gls is spanned by eii, i ∈ I. Let ϵi, i ∈ I, be a basis of h∗ (the dual space of
h) such that ϵi(ejj) = δij . There is a bilinear form (·, ·) on h∗ given by (ϵi, ϵj) = siδij . The root system Φ is
a subset of h∗ given by

Φ := {ϵi − ϵj | i, j ∈ I and i ̸= j}.
Let R+ = {εi − εj | 1 ⩽ i < j ⩽ N} be the set of positive roots. We call a root ϵi − ϵj even (resp. odd) if
|i| = |j| (resp. |i| ≠ |j|). Set αi := ϵi − ϵi+1 for i ∈ I0. Then we have |αi| = |i|+ |i+ 1|.
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The symmetric Cartan matrix Cs = (cij)i,j∈I0 associated to the parity sequence s is given by

cij = (αi, αj).

For example, cii = si + si+1 and ci,i+1 = ci+1,i = −si+1.
For a symmetric parity sequence, the associated Dynkin diagram is also symmetric. We shall give a few

examples. Here we use for even roots and for odd roots. For the parity sequences (−1,−1, 1,−1,−1)
and (−1,−1, 1, 1,−1,−1), the corresponding Dynkin diagrams, respectively, are given by

Note that if N is even (i.e. the rank is odd), then the node in the middle is always an even root. We rephrase
these more precisely.

Let s be a symmetric parity sequence. Let τ : I0 → I0 be the bijection, τi = N − i. Then τ is a Dynkin
diagram involution, i.e. cij = cτi,τj . If N = 2ℓ is even, then ℓ is a fixed point of τ , i.e. τℓ = ℓ. In this case,
we always have |αℓ| = 0̄.

Let θ be the involution of gls defined by

θ : gls → gls, eij 7→ (−1)i−jei′j′ .

The involution θ can be thought as the composition of the involution τ and the Chevalley involution. Let ks
be the fixed point subalgebra of gls under the involution θ. Then the pair (gls, ks) is called a supersymmetric
pair of quasi-split type A (or quasi-split type AIII, to be more precisely), cf. [KY20, She24, AMS24, SW24].

2.2. Drinfeld presentation. From now on, we fix an arbitrary symmetric parity sequence s ∈ Sm|n. For
homogeneous elements x, y in a superalgebra, we write

[x, y] = xy − (−1)|x||y|yx, {x, y} = xy + (−1)|x||y|yx.

Definition 2.1. The twisted super Yangian of quasi-split type A (in Drinfeld presentation) associated with the
symmetric parity sequence s, denoted by Ys

ı , is the unital superalgebra generated by hi,r, bi,r, i ∈ I0, r ∈ N,
where |hi,r| = 0̄ is even and bi,r is of parity |αi|, subject to

[hi,r, hj,s] = 0, hτi,0 = −hi,0, (2.1)
[hi,r, bj,s]− [hi,r−2, bj,s+2]

=
cij − cτi,j

2
{hi,r−1, bj,s}+

cij + cτi,j
2

{hi,r−2, bj,s+1}+
cijcτi,j

4
[hi,r−2, bj,s], (2.2)

[bi,r+1, bj,s]− [bi,r, bj,s+1] =
cij
2
{bi,r, bj,s} − 2δτi,j(−1)rsihj,r+s+1, (2.3)

and the Serre relations: for cij = 0,

[bi,r, bj,s] = δτi,j(−1)rsihj,r+s, (2.4)

and for j ̸= τi ̸= i, j = i± 1, |αi| = 0̄,

Symk1,k2

[
bi,k1 , [bi,k2 , bj,r]

]
= 0, (2.5)

and for |αi−1| = |αi+1| = 0̄, |αi| = 1̄,[
[bi−1,r, bi,0], [bi,0, bi+1,s]

]
= 0, (2.6)

and for N = 2ℓ, j = ℓ± 1,

Symk1,k2

[
bℓ,k1 , [bℓ,k2 , bj,r]

]
=(−1)k1

∑
p⩾0

2−2p
(
sℓ[hℓ,k1+k2−2p−1, bj,r+1]− {hℓ,k1+k2−2p−1, bj,r}

)
, (2.7)
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and for N = 2ℓ+ 1, i ∈ {ℓ, ℓ+ 1}, |αℓ| = 0̄,

Symk1,k2

[
bi,k1 , [bi,k2 , bτi,r]

]
=

4

3
Symk1,k2(−1)k1

k1+r∑
p=0

3−psi[bi,k2+p, hτi,k1+r−p], (2.8)

where hi,s = 0 if s < −1 and hi,−1 = 1.
Remark 2.2. By setting r = 0 and r = 1 in (2.2), we have

[hi,0, bj,r] = (cij − cτi,j)bj,r, (2.9)

[hi,1, bj,r] = (cij + cτi,j)bj,r+1 +
cij − cτi,j

2
{hi,0, bj,r}. (2.10)

If cτi,j = 0, then the relation (2.2) has a more familiar equivalent form, which corresponds to the current
relations for the ordinary super Yangians; see also §4.4 and §6.1.
Lemma 2.3. If cτi,j = 0, then the relation (2.2) is equivalent to

[hi,r+1, bj,s]− [hi,r, bj,s+1] =
cij
2
{hi,r, bj,s}. (2.11)

Proof. The proof is the same as that of [LZ24, Lemma 3.3]. □

2.3. A PBW spanning set. For α ∈ R+ and r ∈ N, where α = αi + αi+1 + · · ·+ αj−1 for some i, j such
that 1 ⩽ i < j ⩽ N , define

bα,r :=
[
bj−1,0,

[
bj−2,0, · · · [bi+1,0, bi,r] · · ·

]]
. (2.12)

Set
I0̸= = {1, . . . , ℓ− 1}, I0= = {ℓ}, if N = 2ℓ;

I0̸= = {1, . . . , ℓ}, I0= = ∅, if N = 2ℓ+ 1.
(2.13)

An order super monomial is an order monomial containing no second or higher order powers of the odd
generators.
Proposition 2.4. The ordered super monomials of{

bα,r, hi,r, hj,2r+1|α ∈ R+, i ∈ I0̸=, j ∈ I0=, r ∈ N
}

(2.14)
(with respect to any fixed total ordering) form a spanning set of Ys

ı .
Proof. We use the same strategy as in [LWZ24a, Proposition 4.5]. Define a filtration on the superalgebra
Ys

ı by setting deg bi,r = deg hi,r = r + 1 and denote by g̃rYs
ı the associated graded superalgebra. Denote

by h̃i,r, b̃i,r the images of hi,r, bi,r in the (r + 1)-st component in g̃rYs
ı . Then the relations (2.2), (2.9),

and (2.10) imply that [h̃i,r, b̃j,s] = 0 for i, j ∈ I0 and r, s ∈ N. By (2.1), h̃i,r and h̃j,s commute in g̃rYs
ı .

Moreover, the relations (2.3)–(2.8) imply that
[b̃i,r+1, b̃j,s]− [b̃i,r, b̃j,s+1] = 0,

[b̃i,r, b̃j,s] = 0, if cij = 0,

Symk1,k2

[
b̃i,k1 , [b̃i,k2 , b̃j,r]

]
= 0, if |αi| = 0̄ and j = i± 1,[

[b̃i−1,r, b̃i,0], [b̃i,0, b̃i+1,s]
]
= 0, if |αi| = 1̄ and |αi−1| = |αi+1| = 0̄.

(2.15)

Thus, g̃rYs
ı is a quotient of the tensor superalgebra C

[
h̃i,r, h̃j,2r+1|i ∈ I0̸=, j ∈ I0=, r ∈ N

]
⊗ Ỹs

ı , where
Ỹs

ı is the superalgebra generated by b̃i,r of parity |αi| for i ∈ I0, r ∈ N subject to the relations (2.15). For
α ∈ R+ and r ∈ N, define b̃α,r in the same way as in (2.12) with bk,s replaced by b̃k,s. It follows from
[Tsy20, §2.6–§2.7] that Ỹs

ı is spanned by the ordered super monomials in b̃α,r for α ∈ R+ and r ∈ N,
completing the proof. □

We will see that these ordered monomials indeed form a basis of Ys
ı ; see Corollary 5.2.
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2.4. On Serre relations. In this subsection, we establish that some complicated Serre relations can be
deduced effectively from other relations and the finite type Serre relations.

Proposition 2.5. Suppose the relations (2.1)–(2.3) hold. Assume further that τi = i± 1, |αi| = 0̄, and[
bi,0, [bi,0, bτi,0]

]
= 4bi,0, (2.16)

then the relation (2.8) holds as well.

Proof. In this case both bi,r and bτi,s are even, and hence the proof is exactly the same as that of [LZ24, Prop.
3.12]. □

Proposition 2.6. Suppose the relations (2.1)–(2.3) hold. Assume further that |αi| = 1̄, |αi−1| = |αi+1| = 0̄,
and [

[bi−1,0, bi,0], [bi,0, bi+1,0]
]
= 0, (2.17)

then the relation (2.6) holds as well.

Proof. Let N = 2ℓ or N = 2ℓ+ 1. If N = 2ℓ, then |αℓ| = 0̄. If N = 2ℓ+ 1, then |αℓ| = |αℓ+1|. Thus our
assumptions happen only if i+ 1 ⩽ ⌊N2 ⌋ or i− 1 ⩾ ⌊N+1

2 ⌋. Set ξj,1 := hi,1 − 1
2h

2
i,0, then

[ξj,1, bk,r] = (cjk + cτj,k)bk,r+1.

Then the relation (2.6) easily follows by applying [ξj,1, · ] to (2.17) for j ∈ I0 such that |j − i| ⩽ 1 and using
induction on r + s, cf. [Lev93]. □

Now let us consider the relation (2.7). This part was done (but not written) in the joint work [LWZ24a]
with Wang and Zhang.

We fix i, j ∈ I0 such that i = τi, i ̸= j, and cij ̸= 0. Then bi,r are even elements and cij = −si. We
assume the relations (2.1)–(2.3) and the finite type Serre relations[

bi,0, [bi,0, bj,0]
]
= −bj,0. (2.18)

Then we shall prove that the general Serre relation (2.7) holds.
Set

bij(u) = [bi,0, bj(u)]. (2.19)
Note that (2.3) for the choice of i, j is equivalent to

(u− v − cij
2 )bi(u)bj(v) = (u− v +

cij
2 )bj(v)bi(u) +

(
[bi,0, bj(v)]− [bi(u), bj,0]

)
.

It follows by setting v = u± cij
2 that

[bi(u), bj,0] = bij(u− cij
2 ) + cijbj(u− cij

2 )bi(u) = bij(u+
cij
2 ) + cijbi(u)bj(u+

cij
2 ). (2.20)

Note that by (2.3), one also has

[bi(u), bi,0] = si
(
bi(u)

2 − hi(u) + 1
)
. (2.21)

Lemma 2.7. We have
[bi,0, bij(u)] = −bj(u). (2.22)

Proof. Using a similar argument of [LWZ23, §4.3] by induction and recursively applying hi,1 and hj,1 :=
hj,1 − 1

2h
2
j,0, one shows that

[
bi,0, [bi,0, bj,r]

]
= −bj,r. The lemma follows from (2.19). □

Lemma 2.8. We have

[hi(u), bj,0] = cijhi(u)bj(u+
cij
2 ) + cijbj(−u− cij

2 )hi(u), (2.23)
u

u2 − 1
4

(
[hi(u), bj,1] + cij{hi(u), bj,0}

)
= cijbj(u− cij

2 )hi(u)− cijbj(−u− cij
2 )hi(u). (2.24)
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Proof. The relation (2.2) for the choice of i, j can be equivalently written as

(u2 − v2)[hi(u), bj(v)] = cijv{hi(u), bj(v)}+
1

4
c2ij [hi(u), bj(v)]

− [hi(u), bj,1]− cij{hi(u), bj,0} − v[hi(u), bj,0].

Hence

−[hi(u), bj,1]− cij{hi(u), bj,0}
= (u2 − (v +

cij
2 )2)hi(u)bj(v)− (u2 − (v − cij

2 )2)bj(v)hi(u) + v[hi(u), bj,0].

Note that the LHS is independent of v.
Setting v = u+

cij
2 , we have

−[hi(u), bj,1]− cij{hi(u), bj,0} = −(2ciju+ c2ij)hi(u)bj(u+
cij
2 ) + (u+

cij
2 )[hi(u), bj,0].

Setting v = −u− cij
2 , we obtain

−[hi(u), bj,1]− cij{hi(u), bj,0} = (2ciju+ c2ij)bj(−u− cij
2 )hi(u)− (u+

cij
2 )[hi(u), bj,0].

Then the first equality follows from these two equations above.
Setting v = u− cij

2 , we have

−[hi(u), bj,1]− cij{hi(u), bj,0} = −(2ciju− c2ij)bj(u− cij
2 )hi(u) + (u− cij

2 )[hi(u), bj,0].

Then the second equality follows from the two equations above. □

Lemma 2.9. We have[
bi(u), [bi,0, bj,0]

]
+
[
bi,0, [bi(u), bj,0]

]
= bj(−u− cij

2 )hi(u)− bj(u− cij
2 )hi(u). (2.25)

Proof. By Jacobi identity and cij = −si, we get that[
bi(u), [bi,0, bj,0]

]
+
[
bi,0, [bi(u), bj,0]

]
= 2

[
[bj,0, bi(u)], bi,0

]
+
[
bj,0, [bi,0, bi(u)]

]
(2.20)
=

(2.21)
−

[
bij(u− cij

2 )− sibj(u− cij
2 )bi(u), bi,0

]
−
[
bij(u+

cij
2 )− sibi(u)bj(u+

cij
2 ), bi,0

]
+ si[bj,0, hi(u)− bi(u)

2]

(∗)
= − bj(u− cij

2 )− sibij(u− cij
2 )bi(u) + bj(u− cij

2 )(bi(u)
2 − hi(u) + 1)

− bj(u+
cij
2 )− sibi(u)bij(u+

cij
2 ) + (bi(u)

2 − hi(u) + 1)bj(u+
cij
2 ) + si[bj,0, hi(u)]

+ si(bij(u− cij
2 )− sibj(u− cij

2 )bi(u))bi(u) + sibi(u)(bij(u+
cij
2 )− sibi(u)bj(u+

cij
2 ))

= − bj(u− cij
2 )hi(u)− hi(u)bj(u+

cij
2 ) + si[bj,0, hi(u)]

(2.23)
= bj(−u− cij

2 )hi(u)− bj(u− cij
2 )hi(u),

where in (∗) we applied (2.19)–(2.22). □

Remark 2.10. Since hi(u) is even, it follows from (2.23) that

[hi(u), bj,0] = −sihi(u)bj(−u+
cij
2 )− sibj(u− cij

2 )hi(u).

Using the above equation instead of (2.23) in the proof of Lemma 2.9, we find that[
bi(u), [bi,0, bj,0]

]
+
[
bi,0, [bi(u), bj,0]

]
= hi(u)bj(−u+

cij
2 )− hi(u)bj(u+

cij
2 ). (2.26)

Proposition 2.11. Suppose the relations (2.1)–(2.3) and (2.18) hold, then the Serre relation (2.7) also hold.
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Proof. By (2.24) and (2.25), we find that[
bi(u), [bi,0, bj,0]

]
+
[
bi,0, [bi(u), bj,0]

]
=

u

u2 − 1
4

(
si[hi(u), bj,1]− {hi(u), bj,0}

)
.

Expanding (4u2 − 1)−1 as a power series in u−1 and comparing coefficients, one shows the Serre relations
(2.7) for the case k1 = r = 0 and k2 ∈ N, which corresponds to [LWZ23, Claim 1 in §4.3]. Then as argued
in [LWZ23, Claims 2-3 in §4.3], one proves that

Sij(k1 + 1, k2; r) = −Sij(k1, k2 + 1; r).

Hence the Serre relation (2.7) for general case is reduced to the special case k1 = r = 0 and k2 ∈ N proved
above. □

From the proof of Proposition 2.11, we also have the following.

Corollary 2.12. The relations (2.2) and (2.25) imply the Serre relations (2.7).

3. Twisted super Yangians in R-matrix presentation

In this section, we recall the basics for the twisted super Yangians Ys of quasi-split type A (under the name
reflection superalgebra) defined in the R-matrix presentation from [MR02, RS07], cf. also [Lu23b].

3.1. Yangians. We start with recalling the basic theory of super Yangian Y(gls) from [Naz91].
In this subsection, we do not require s to be symmetric. Let Cs be the vector superspace with a basis vi for

i ∈ I such that |vi| = |i|. Let Eij ∈ End(Cs) be the linear operators such that Eijvk = δjkvi for i, j, k ∈ I.

Definition 3.1. The super Yangian Y(gls) corresponding to the Lie superalgebra gls is a unital associative
superalgebra with generators t(r)ij of parity |i| + |j|, where i, j ∈ I and r ∈ Z>0, and the defining relations
written in terms of the generating series

tij(u) = δij + t
(1)
ij u

−1 + t
(2)
ij u

−2 + · · ·
by the relations,

(u− v)[tij(u), tkl(v)] = (−1)|i||j|+|i||k|+|j||k|(tkj(u)til(v)− tkj(v)til(u)
)
. (3.1)

The super Yangian Y(gls) has the following R-matrix presentation. Let R(u) be the Yang R-matrix

R(u) = 1− P

u
∈ End(Cs ⊗ Cs)[u−1], where P =

N∑
i,j=1

sjEij ⊗ Eji, (3.2)

and

T (u) =

N∑
i,j=1

tij(u)⊗ Eij(−1)|i||j|+|j| ∈ Y(gls)[[u−1]]⊗ End(Cs).

Then the defining relations of Y(gls) can be written as
R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v).

Note that the Yang R-matrix satisfies the Yang-Baxter equation
R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v). (3.3)

The super flip operator P has the property P (vi ⊗ vj) = (−1)|i||j|vj ⊗ vi.
Let g(u) be any formal power series in u−1 with leading term 1,

g(u) = 1 + g1u
−1 + g2u

−2 + · · · ∈ C[[u−1]].

There is an automorphism of Y(gls) defined by
Ms

g(u) : T (u) → g(u)T (u). (3.4)
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The super Yangian for sls is the subalgebra Y(sls) of Y(gls) which consists of all elements stable under
all the automorphisms of the form (3.4).

Consider the filtration on Y(gls) obtained by setting

deg t
(r)
ij = r − 1 (3.5)

for every r ⩾ 1. Denote by grY(gls) the associated graded superalgebra. We write t̄(r)ij the image of t(r)ij in
grY(gls). Let gls[z] be the polynomial current superalgebra of gls in the indeterminate z. Then the map

U(gls[z]) → grY(gls), sieijz
r 7→ t̄

(r+1)
ij , (3.6)

induces a Hopf superalgebra isomorphism.
We collect a few facts about the inverse of T (u) of Y(gls). Define the series t̃ij(u), whose coefficients

t̃
(r)
ij are in Y(gls),

t̃ij(u) := δij +
∑
r>0

t̃
(r)
ij u

−r

by

T̃ (u) :=
(
T (u)

)−1
=

N∑
i,j=1

t̃ij(u)⊗ Eij(−1)|i||j|+|j|.

Then

t̃ij(u) = δij +
∑
k>0

(−1)k
N∑

a1,··· ,ak−1=1

t◦ia1(u)t
◦
a1a2(u) · · · t

◦
ak−1j

(u), (3.7)

where t◦ij(u) = tij(u)− δij . In particular, by taking the coefficient of u−r, for r ⩾ 1, one obtains

t̃
(r)
ij =

r∑
k=1

(−1)k
N∑

a1,··· ,ak−1=1

∑
r1+···+rk=r

t
(r1)
ia1

t(r2)a1a2 · · · t
(rk)
ak−1j

, (3.8)

where ri for 1 ⩽ i ⩽ k are positive integers.

3.2. Twisted super Yangians. Recall that i′ = N + 1 − i for 1 ⩽ i ⩽ N . Let G = (gij) be the N × N
even matrix defined by gij = δij′ . For any N ×N super matrix M = (mij), define

M ′ = GMG−1 = (mi′j′).

In particular, we have the modified R-matrix,

R′(u) = G1R(u)G1 = G2R(u)G2. (3.9)

The following twisted super Yangians were specific reflection (super)algebras [Skl88] introduced in [MR02,
RS07]; see also [BR09, Lu23b].

Definition 3.2. The twisted super Yangian Ys of quasi-split type A is a unital associative superalgebra with
generators x(r)ij of parity |i|+ |j|, where i, j ∈ I and r ∈ Z>0, and the defining relations written in terms of
the generating series

xij(u) = δij + x
(1)
ij u

−1 + x
(2)
ij u

−2 + · · · (3.10)

by the quaternary relations,
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[xij(u), xkl(v)] =
(−1)|i||j|+|i||k|+|j||k|

u− v
(xkj(u)xil(v)− xkj(v)xil(u))

+
(−1)|i||j|+|i||k|+|j||k|

u+ v

(
δkj′

N∑
a=1

xia′(u)xal(v)− δil′
N∑
a=1

xka′(v)xaj(u)
)

−
δij′

u2 − v2

( N∑
a=1

xka′(u)xal(v)−
N∑
a=1

xka′(v)xal(u)
)

(3.11)

and the unitary condition
N∑
a=1

xia′(u)xaj(−u) = δij′ . (3.12)

Define the operator X(u) ∈ Ys[[u−1]]⊗ End(Cs),

X(u) =

N∑
i,j=1

xij(u)⊗ Eij(−1)|i||j|+|j|.

Then the defining relations of Ys are given by
R(u− v)X1(u)R

′(u+ v)X2(v) = X2(v)R
′(u+ v)X1(u)R(u− v), (3.13)

X(u)X ′(−u) = 1s, (3.14)
where 1s is the identity matrix in End(Cs).

It is convenient to work on the extended twisted super Yangians defined below instead of twisted super
Yangians. By abuse of notations, we shall keep using the same notations for the twisted super Yangians and
extended twisted super Yangians of various elements such as xij(u) and X(u), etc.

Definition 3.3. The extended twisted super Yangian Xs of quasi-split type A is the unital associative superal-
gebra with generators x(r)ij of parity |i|+ |j|, where i, j ∈ I and r ∈ Z>0 satisfying the quaternary relations
(3.13), where xij(u) is again given by (3.10).

Sometimes, we shall use super Yangians and twisted super Yangians whose ranks are smaller than Y(gls)
and Ys. In our situation, they are associated to subsequences of the parity sequence s.

For 1 ⩽ i ⩽ j ⩽ N and a parity sequence s = (s1, s2, · · · , sN ), we use the notation
s[i,j] := (si, si+1, · · · , sj)

and similar notations in terms of open intervals.
For a fixed symmetric parity sequence s and 1 ⩽ m ⩽ ⌊N−1

2 ⌋, the parity sequences s(m,m′) and s[m,m′]

are symmetric as well. We further use the following
Y(gls[m]) := Y(gls[1,m]), Xs

(m,m′) := Xs(m,m′) , Xs
[m,m′] := Xs[m,m′] . (3.15)

3.3. Basic properties. Let X̃(u) = X(u)−1 = (x̃ij(u)), i.e.

X̃(u) =
N∑

i,j=1

x̃ij(u)⊗ Eij(−1)|i||j|+|j|.

Proposition 3.4 ([Lu23b, Prop. 3.2]). In the extended twisted super Yangian Xs, the product X(u)X ′(−u)
is a scalar matrix,

X(u)X ′(−u) = X ′(−u)X(u) = c(u)1s, (3.16)
where c(u) is an even series in u−1 whose coefficients are central in Xs. In particular, we have xi′j′(−u) =
c(u)x̃ij(u).
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It is known that Ys can be identified as a subalgebra of Y(gls), see e.g. [Ket23,Lu23b,BK24]. Specifically,
the map

X(u) 7→ T (u)T̃ ′(−u) (3.17)
defines a superalgebra embedding Ys ↪→ Y(gls). Moreover, there is a filtration on Ys inherited from the one
(3.5) on Y(gls) such that deg x(r)ij = r− 1. Let Fs(Y

s) be the subspace of Ys spanned by elements of degree
⩽ s. Then

F0(Y
s) ⊂ F1(Y

s) ⊂ F2(Y
s) ⊂ . . . , Ys =

⋃
s⩾0

Fs(Y
s). (3.18)

Denote by grYs the associated graded superalgebra. Let x̄(r)ij be the image of x(r)ij in the (r−1)-st component
of grYs. Then by (3.8)

x̄
(r)
ij = t̄

(r)
ij − (−1)r t̄

(r)
i′j′ . (3.19)

Let ϑ be the involution of gls defined by
ϑ : gls −→ gls, eij 7→ ei′j′ .

Extend this involution to gls[z] by sending gzr to ϑ(g)(−z)r for g ∈ gls and r ∈ N. Let gls[z]ϑ be the fixed
point subalgebra of gls[z] under the involution ϑ. Then it is known that the map

U(gls[z]ϑ) −→ grYs, si
(
eij + (−1)rei′j′

)
zr 7→ x̄

(r+1)
ij (3.20)

induces a superalgebra isomorphism, cf. (3.6) and (3.19).
By restriction, we can also define sls[z]ϑ and U(sls[z]ϑ).

4. Gauss decomposition

In this section, we formulate and study the Gauss decomposition for twisted super Yangians. Using the
Gaussian generators, we establish in Theorem 5.1 an isomorphism between Ys

ı introduced in Definition 2.1
and the special twisted super Yangian SYs.

4.1. Quasi-determinants and Gauss decomposition. We shall also need the quasi-determinant presenta-
tion, see [GGRW05], of Drinfeld current generating series in terms of R-matrix generating series.

Let X be a square (super)matrix over a ring with identity. Let Xij be the submatrix of X obtained by
deleting the i-th row and j-th column. Let Rj

i be the row matrix obtained from the i-th row of X by removing
xij and Ci

j be the column matrix obtained from the j-th column of X by deleting xij . Suppose Xij is invertible.
Then the (i, j)-th quasi-determinant of X is defined by the first formula below and denoted graphically by
the boxed notation (cf. [Mol07, §1.10]):

|X|ij
def
= xij − Rj

i

(
Xij

)−1
Ci
j =

∣∣∣∣∣∣∣∣∣∣
x11 · · · x1j · · · x1n

· · · · · ·
xi1 · · · xij · · · xin

· · · · · ·
xn1 · · · xnj · · · xnn

∣∣∣∣∣∣∣∣∣∣
.

By [GGRW05, Theorem 4.96], the matrix X(u), for both Xs and Ys, has the following Gauss decompo-
sition:

X(u) = F (u)D(u)E(u)

for unique matrices of the form

D(u) =


d1(u) · · · 0

d2(u)
...

... . . .
0 · · · dN (u)

 ,
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E(u) =


1 e12(u) · · · e1N (u)

. . . e2N (u)
. . . ...

0 1

 , F (u) =


1 · · · 0

f21(u)
. . . ...

... . . .
fN1(u) fN2(u) · · · 1

 ,
where the matrix entries are defined in terms of quasi-determinants:

di(u) =

∣∣∣∣∣∣∣
x11(u) · · · x1,i−1(u) x1i(u)

... . . . ...
xi1(u) · · · xi,i−1(u) xii(u)

∣∣∣∣∣∣∣ , d̃i(u) = di(u)
−1, (4.1)

eij(u) = d̃i(u)

∣∣∣∣∣∣∣∣∣
x11(u) · · · x1,i−1(u) x1j(u)

... . . . ...
...

xi−1,1(u) · · · xi−1,i−1(u) xi−1,j(u)
xi1(u) · · · xi,i−1(u) xij(u)

∣∣∣∣∣∣∣∣∣ , (4.2)

fji(u) =

∣∣∣∣∣∣∣∣∣
x11(u) · · · x1,i−1(u) x1i(u)

... . . . ...
...

xi−1,1(u) · · · xi−1,i−1(u) xi−1,i(u)
xj1(u) · · · xj,i−1(u) xji(u)

∣∣∣∣∣∣∣∣∣ d̃i(u). (4.3)

The Gauss decomposition can also be written component-wise as, for i < j,

xii(u) = di(u) +
∑
k<i

fik(u)dk(u)eki(u),

xij(u) = di(u)eij(u) +
∑
k<i

fik(u)dk(u)ekj(u), (4.4)

xji(u) = fji(u)di(u) +
∑
k<i

fjk(u)dk(u)eki(u).

We further denote

eij(u) =
∑
r⩾1

e
(r)
ij u

−r, fji(u) =
∑
r⩾1

f
(r)
ji u

−r, dk(u) = 1 +
∑
r⩾1

d
(r)
k u−r. (4.5)

ei(u) =
∑
r⩾1

e
(r)
i u−r = ei,i+1(u), fi(u) =

∑
r⩾1

f
(r)
i u−r = fi+1,i(u), 1 ⩽ i < N. (4.6)

Set

D̃(u) = D(u)−1 =
∑

1⩽i⩽N

d̃i(u)⊗ Eii,

Ẽ(u) = E(u)−1 =
∑

1⩽i<j⩽N

ẽij(u)⊗ Eij(−1)|i||j|+|j|,

F̃ (u) = F (u)−1 =
∑

1⩽i<j⩽N

f̃ji(u)⊗ Eji(−1)|i||j|+|i|.

(4.7)

Then we have

ẽij(u) =
∑

i=i0<i1<···<is=j

(−1)sei0i1(u)ei1i2(u) · · · eis−1is(u),

f̃ji(u) =
∑

i=i0<i1<···<is=j

(−1)sfisis−1(u) · · · fi2i1(u)fi1i0(u).
(4.8)



TWISTED SUPER YANGIANS OF QUASI-SPLIT TYPE A 13

4.2. A homomorphism Xs
(m,m′) → Xs. Unlike the case of type AI in [LWZ23], the commutator relations

(3.11) for type AIII involve summation. Consequently, there is no obvious (natural) embedding from Xs̃ to
Xs for a symmetric parity subsequence s̃ of s. From the viewpoint of Satake diagrams, one still expects a
homomorphism from Xs

(m,m′) → Xs; recall the definition of Xs
(m,m′) from (3.15). The main goal of this

section is to construct such a homomorphism, following similar strategy of [JLM18, §3].
For 2 ⩽ i ⩽ 2′(= N − 1), we have

x11(u+ s1)xi1(u) = xi1(u+ s1)x11(u). (4.9)
Therefore ∣∣∣∣x11(u) x1j(u)

xi1(u) xij(u)

∣∣∣∣ = xij(u)− xi1(u)x11(u)
−1x1j(u)

= x11(u+ s1)
−1

(
x11(u+ s1)xij(u)− xi1(u+ s1)x1j(u)

)
.

Set
Tij(u) = x11(u+ s1)xij(u)− xi1(u+ s1)x1j(u) = x11(u+ s1)

∣∣∣∣x11(u) x1j(u)
xi1(u) xij(u)

∣∣∣∣ (4.10)

and introduce
Γ(u) =

∑
ai,bi

Ea1b1 ⊗ Ea2b2 ⊗ Γa1a2
b1b2

(u)

= R12(s1)X1(u+ s1)R
′
12(2u+ s1)X2(u) = X2(u)R

′
12(2u+ s1)X1(u+ s1)R12(s1),

(4.11)

where the last equality follows from (3.13).

Lemma 4.1. We have
(1) [x11(u), Tij(v)] = 0, 2 ⩽ i, j ⩽ 2′;
(2) Γ1i

1j(u) = Tij(u)(−1)|i||j|+|j|, 2 ⩽ i, j ⩽ 2′;
(3) Γi1i2

j1j2
(u) = −s1(−1)|i1||i2|+|i1||j1|+|i2||j1|Γi2i1

j1j2
(u) = −s1(−1)|j1||j2|+|j1||i2|+|j2||i2|Γi1i2

j2j1
(u).

Proof. (1) Note that by (3.11) we have [x11(u), x11(v)] = 0. It follows from (3.11) that
[x11(u), Tij(v)] = [x11(u), x11(v + s1)xij(v)− xi1(v + s1)x1j(v)]

=
s1

u− v
x11(v + s1)

(
xi1(u)x1j(v)− xi1(v)x1j(u)

)
− s1
u− v − s1

(
xi1(u)x11(v + s1)

− xi1(v + s1)x11(u)
)
x1j(v)−

s1
u− v

xi1(v + s1)
(
x11(u)x1j(v)− x11(v)x1j(u)

)
.

Due to (4.9), it suffices to show that
1

u− v
x11(v + s1)xi1(u)−

1

u− v − s1
xi1(u)x11(v + s1)

+
s1

(u− v)(u− v − s1)
si1(v + s1)s11(u) = 0

which is equivalent to
(v + s1 − u)[x11(v + s1), xi1(u)] = s1

(
xi1(v + s1)x11(u)− xi1(u)x11(v + s1)

)
.

This follows directly from (3.11).
(2) Computing Γ1i

1j(u), 2 ⩽ i, j ⩽ 2′, using the definition (4.11), one finds that it is given by(
x11(u+ s1)xij(u)− xi1(u+ s1)x1j(u)

)
(−1)|i||j|+|j|

which coincides with Tij(u)(−1)|i||j|+|j| in (4.10).
(3) Note that (1 − s1P12)R12(s1) = 2R12(s1). Thus R12(s1) remains unchanged when multiplying by

(1 − s1P12)/2 from the left. Then applying multiplication by (1 − s1P12)/2 from the left to (4.11), one
derives Γi1i2

j1j2
(u) = −s1(−1)|i1||i2|+|i1||j1|+|i2||j1|Γi2i1

j1j2
(u).
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To prove Γi1i2
j1j2

(u) = −s1(−1)|j1||j2|+|j1||i2|+|j2||i2|Γi1i2
j2j1

(u), using

R12(s1)S1(u+ s1)R
′
12(2u+ s1)S2(u) = S2(u)R

′
12(2u+ s1)S1(u+ s1)R12(s1)

from (3.13), one exploits the same approach with multiplication by (1−s1P12)/2 from the right to (4.11). □

We will need the following simplified expression of (3.3) when v = u− s1.

Lemma 4.2. We have the following relations,

R12(s1)R13(u)R23(u− s1) = R12(s1)
(
1− P13 + P23

u− s1

)
,

R23(u− s1)R13(u)R12(s1) =
(
1− P13 + P23

u− s1

)
R12(s1).

Proposition 4.3 (cf. [JLM18, Lem. 3.6]). The map xij(u) 7→ Tij(u), 2 ⩽ i, j ⩽ 2′, defines a homomorphism
Xs
[2,2′] → Xs.

Proof. We first introduce some shorthand notations. Let u and v be parameters. Set a = u− v, ã = u+ v.
We have the following equality in the superalgebra Xs ⊗ End(Cs)⊗4,

R23(a− s1)R13(a)R24(a)R14(a+ s1)Γ12(u)

×R′
14(ã+ s1)R

′
24(ã)R

′
13(ã+ 2s1)R

′
23(ã+ s1)Γ34(v)

= Γ34(v)R
′
23(ã+ s1)R

′
13(ã+ 2s1)R

′
24(ã)R

′
14(ã+ s1)

× Γ12(u)R14(a+ s1)R24(a)R13(a)R23(a− s1).

(4.12)

This follows from the Yang-Baxter equation (3.3), where we also used (3.9), and the relations (3.13). We
shall rewrite both sides of (4.12) by Lemma 4.2 and then equate certain matrix elements.

Consider the right hand side of (4.12). Applying (4.11), (3.13), and Lemma 4.2, we have

Γ34(v)R
′
23(ã+ s1)R

′
13(ã+ 2s1)R

′
24(ã)R

′
14(ã+ s1)

× Γ12(u)R14(a+ s1)R24(a)R13(a)R23(a− s1)

= Γ34(v)
(
1− P ′

13 + P ′
23

ã+ s1

)(
1− P ′

14 + P ′
24

ã

)
Γ12(u)

(
1− P14 + P24

a

)(
1− P13 + P23

a− s1

)
.

Then we apply the operator above to a basis vector of the form v1⊗vj⊗v1⊗vl for certain j, l ∈ {2, · · · , 2′}.
The application of the factor (

1− P14 + P24

a

)(
1− P13 + P23

a− s1

)
gives

a− 2s1
a− s1

(
v1 ⊗ vj ⊗ v1 ⊗ vl −

1

a
v1 ⊗ vl ⊗ v1 ⊗ vj(−1)|1||j|+|1||l|+|j||l|

)
− 1

a− s1
v1 ⊗ v1 ⊗ vj ⊗ vl(−1)|1||l| − s1(a− 2s1)

a(a− s1)
vl ⊗ vj ⊗ v1 ⊗ v1(−1)|1||j|+|j||l|

+
1

a(a− s1)

(
vl ⊗ v1 ⊗ vj ⊗ v1(−1)|1|+|j||l| + v1 ⊗ vl ⊗ vj ⊗ v1(−1)|1||l|+|j||l|)

)
.

(4.13)

It follows from Lemma 4.1 (3) that Γa1a2
11 (u) = 0 and hence a further application of Γ12(u) annihilates the

first term in the second line of (4.13). Similarly, consider the action of Γ12(u) on the last line of (4.13), we
obtain

Γa1a2
l1 (u)⊗ va1 ⊗ va2 ⊗ vj ⊗ v1(−1)|a2||l|+|1||l|+|1|+|j||l|

+Γa1a2
1l (u)⊗ va1 ⊗ va2 ⊗ vj ⊗ v1(−1)|a2||1|+|j||l|.
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It follows from Lemma 4.1 (3) again that the above sum vanishes. We consider the further application
of the rest factors acting on the second term in the second line of (4.13). The application of Γ12(u) on
vl ⊗ vj ⊗ v1 ⊗ v1 gives vectors of the form va ⊗ vb ⊗ v1 ⊗ v1. A further application the factor(

1− P ′
13 + P ′

23

ã+ s1

)(
1− P ′

14 + P ′
24

ã

)
(4.14)

on va ⊗ vb ⊗ v1 ⊗ v1 results in

va ⊗ vb ⊗ v1 ⊗ v1

− 1

ã+ s1
(va ⊗ v1′ ⊗ vb′ ⊗ v1(−1)|1||b| + va ⊗ v1′ ⊗ v1 ⊗ vb′(−1)|1|)

+
1

ã(ã+ s1)
(v1′ ⊗ v1′ ⊗ va′ ⊗ vb′ + v1′ ⊗ v1′ ⊗ vb′ ⊗ va′(−1)|1|+|a||b|)

− 1

ã+ s1
(v1′ ⊗ vb ⊗ v1 ⊗ va′(−1)|a||b|+|1||b|+|1| + v1′ ⊗ vb ⊗ va′ ⊗ v1(−1)|a||b|+|1||a|+|1||b|).

Again by Lemma 4.1 (3), Γ34(v) annihilates the above vectors. Thus it suffices to consider the further
application of the rest factors acting on the terms in the first line of (4.13). Note that the action of Γ12(u)
gives vectors of the form va ⊗ vb ⊗ v1 ⊗ vc where 2 ⩽ c ⩽ 2′. A similar calculation as above shows that
the restriction of the image of va ⊗ vb ⊗ v1 ⊗ vc under the operator

Γ34(v)
(
1− P ′

13 + P ′
23

ã+ s1

)(
1− P ′

14 + P ′
24

ã

)
to the subspace spanned by the vectors of the form v1 ⊗ vi ⊗ v1 ⊗ vk with 2 ⩽ i, k ⩽ 2′ is nonzero only if
a = 1 and 2 ⩽ b ⩽ 2′. Moreover,(

1− P ′
13 + P ′

23

ã+ 1

)(
1− P ′

14 + P ′
24

ã

)
v1 ⊗ vb ⊗ v1 ⊗ vc ≡

(
1− P ′

24

ã

)
v1 ⊗ vb ⊗ v1 ⊗ vc,

where the symbol ≡ means we only keep the basis vectors which can give a nonzero contribution to the
coefficients of v1 ⊗ vi ⊗ v1 ⊗ vk after the subsequent application of the operator Γ34(v).

To sum up, we have proved that the restriction of the operator on the right hand side of (4.12) to the
subspace spanned by the basis vectors of the form v1 ⊗ vj ⊗ v1 ⊗ vl with 2 ⩽ j, l ⩽ 2′ coincides with the
operator

a− 2s1
a− s1

Γ34(v)
(
1− P ′

24

ã

)
Γ12(u)

(
1− P24

a

)
=
a− 2s1
a− s1

Γ34(v)R
′
24(u+ v)Γ12(u)R24(u− v).

(4.15)

HereR24(u−v) andR′
24(u+v) are the R-matrices used to define the extended twisted super Yangian Xs

[2,2′].
Moreover, the matrix elements for this restriction involve only the series Γ1i

1j(u) with 2 ⩽ i, j ⩽ 2′.
For the left hand side of (4.12), we again apply it to the basis vectors of the form v1 ⊗ vj ⊗ v1 ⊗ vl with

2 ⩽ j, l ⩽ 2′ and look at the coefficients of the basis vectors of the same form in the image. Then the same
argument as for the right hand side (with the reversed factors in the operators) implies that the coefficients of
such basis vectors coincide with those of the operator

a− 2s1
a− s1

(
1− P24

a

)
Γ12(u)

(
1− P ′

24

ã

)
Γ34(v)

=
a− 2s1
a− s1

R24(u− v)Γ12(u)R
′
24(u+ v)Γ34(v).

(4.16)

Again, R24(u − v) and R′
24(u + v) are the R-matrices used to define the extended twisted super Yangian

Xs
[2,2′]. Moreover, the matrix elements for this restriction involve only the series Γ1i

1j(u) with 2 ⩽ i, j ⩽ 2′.
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Therefore, by equating the matrix elements of the operators (4.15) and (4.16), we get the R-matrix form of
the defining relations for the superalgebra Xs

[2,2′] is satisfied by the series

Tij(u) = Γ1i
1j(u)(−1)|i||j|+|j|,

see Lemma 4.1 (2), as required. □

Remark 4.4. In the orthosymplectic Yangian case [Mol24, FT23], the proof of [JLM18, Lem. 3.6] does not
fully extend to the super case as the R-matrix R(1) is not defined in general. In our situation, we can still use
the same strategy of [JLM18, Lem. 3.6] as the R-matrix R(s1) is always defined.

We also need the following generalization of Proposition 4.3. Fix a positive integer m such that m ⩽ ℓ

if N = 2ℓ+ 1 and m ⩽ ℓ− 1 if N = 2ℓ. Suppose that the generators x(r)ij of the superalgebra Xs
(m,m′) are

labelled by the indices m+ 1 ⩽ i, j ⩽ (m+ 1)′ and r > 0.

Proposition 4.5. The mapping

ψs
m : xij(u) 7→

∣∣∣∣∣∣∣∣
x11(u) . . . x1m(u) x1j(u)
. . . . . . . . . . . .

xm1(u) . . . xmm(u) xmj(u)
xi1(u) . . . xim(u) xij(u)

∣∣∣∣∣∣∣∣ , m+ 1 ⩽ i, j ⩽ (m+ 1)′, (4.17)

defines a superalgebra homomorphism Xs
(m,m′) → Xs.

Proof. The proof is parallel to that of [JLM18, Proposition 3.7] by using the Sylvester theorem for quasi-
determinants. □

The homomorphisms ψm have the following consistence property. For l ∈ N, we have the corresponding
homomorphism

ψ
s(l,l′)
m : Xs

(m+l,(m+l)′) → Xs
(l,l′)

given by (4.17).

Corollary 4.6. We have the equality of superalgebra homomorphisms,

ψs
l ◦ ψ

s(l,l′)
m = ψs

m+l.

Proof. Follows from the same argument as in [JLM18, Proposition 3.8]. □

Corollary 4.7. We have the relations [
xab(u), ψm(xij(v))

]
= 0

for all 1 ⩽ a, b ⩽ m and m+ 1 ⩽ i, j ⩽ (m+ 1)′.

Proof. It follows from e.g. [Pen16] that the identities hold for the Yangian Y(gls). Thus it is proved as the
Yangians of type BCD case [JLM18, Coro. 3.10]; see also [Mol24, Coro. 3.3] and [FT23, Coro. 3.52]. □

4.3. Gaussian generators and their properties. Recall the definition of the central series c(u) from (3.16).

Lemma 4.8. In the superalgebra Xs, we have c(u)d̃i′(u) = di(−u),
d̃i(u)di+1(u) = d̃i′−1(−u)di′(−u), ẽij(u) = fi′j′(−u), f̃ji(u) = ej′i′(−u).

In particular, we have Ẽ(u) = F (−u)′ in matrix form and ei(u) = −fτi(−u).

Proof. This is completely parallel to the proof of [LZ24, Lem. 6.8]. □

Lemma 4.9. Suppose m ⩽ ⌊N−1
2 ⌋, then the homomorphism ψs

m : Xs
(m,m′) → Xs sends

di(u) → dm+i(u), eij(u) → em+i,m+j(u), fji(u) → fm+j,m+i(u).

Proof. The lemma follows from Propositions 4.3, 4.6; cf. the proof of [LWZ23, Corollary 3.2]. □
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Due to Lemma 4.9, we call ψs
m a shift homomorphism.

Lemma 4.10. Suppose m ⩽ ⌊N−1
2 ⌋. We have [di(u), dj(v)] = 0 for 1 ⩽ i, j ⩽ N and

[di(u), ej(v)] = [di(u), fj(v)] = 0,

for (1) 1 ⩽ i ⩽ m,m < j < (m+ 1)′ and (2) 1 ⩽ j < m,m+ 1 ⩽ i ⩽ (m+ 1)′.

Proof. Note that [d1(u), d1(v)] = 0 follows from (3.11) and this implies by Lemma 4.8 and Lemma 4.9 that
[di(u), di(v)] = 0 for 1 ⩽ i ⩽ N . The other relations are corollaries of Corollary 4.7, Lemma 4.8, and
Lemma 4.9. □

Lemma 4.11. There is an anti-automorphism η for Xs (and for Ys) defined by

η : X(u) −→ Xt(u), xij(u) 7→ xji(u)(−1)|i||j|+|j|. (4.18)

Moreover, for 1 ⩽ i < j ⩽ N and 1 ⩽ k ⩽ N , we have

η
(
eij(u)

)
= fji(u)(−1)|i||j|+|j|, η

(
fji(u)

)
= eij(u)(−1)|i||j|+|i|, η

(
dk(u)

)
= dk(u).

Proof. It is straightforward to prove that η defines an anti-automorphism for Xs and Ys. Applying η to (4.4),
the second statement follows from the uniqueness of Gauss decomposition. □

Lemma 4.12. The superalgebra Xs is generated by the coefficients of di(u) and ej(u), where 1 ⩽ i ⩽ N
and 1 ⩽ j < N .

Proof. We say that a series in u−1 can be generated if its coefficients can be generated by the coefficients of
di(u) and ej(u), where 1 ⩽ i ⩽ N and 1 ⩽ j < N .

By Lemma 4.8 and (4.8), it suffices to show that ekl(u) with k < l can be generated. We prove it by
induction on N . The base case N = 2 is trivial. Now assume N ⩾ 3. Then it follows from Lemma 4.9 and
the induction hypothesis that dk(u), eij(u), fji(u) for 2 ⩽ k ⩽ 2′ and 2 ⩽ i < j ⩽ 2′ can be generated.

Then we prove that e1j(u) for j ⩾ 3. Note that x1j(u) = d1(u)e1j(u), it suffices to show s1j(u) can be
generated by another induction on j. Now let 2 ⩽ j < N and suppose that x1k(u) for 1 ⩽ k ⩽ j can be
generated. By (3.11), we have

(u2 − v2)[x1j(u), xj,j+1(v)] = (u+ v)sj
(
xjj(u)x1,j+1(v)− xjj(v)x1,j+1(u)

)
+(u− v)sj

(
δjj′

N∑
a=1

x1a′(u)xa,j+1(v)− δ1(j+1)′

N∑
a=1

xja′(v)xaj(u)
)
.

Taking the coefficients of v, we have

x1,j+1(u) = sj [x1j(u), x
(1)
j,j+1]− δjj′x1,j′−1(u) + δ1,j′−1xj′j(u) (4.19)

Clearly, [x1j(u), x
(1)
j,j+1] can be generated. If j = j′, then x1,j′−1(u) = x1,j−1(u) = d1(u)e1,j−1(u) can be

generated by induction hypothesis. If j′ = 2, then xj′j(u) = x2j(u) can be expressed by

xj′j(u) =

{
d2(u)e2j(u) + f1(u)d1(u)e1j(u), if j > 2.

d2(u) + f1(u)d1(u)e1(u), if j = 2.

can also be generated by induction hypothesis. Thus it follows from (4.19) that x1,j+1(u) can be generated.
Similarly, one proves that fj1(u) can also be generated. Finally, using (4.8), we find that ejN (u) = f̃j′1(−u)

can be generated. Similarly, fNj(u) can also be generated. The proof is complete. □
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4.4. Special twisted super Yangians. Let ℓ = ⌊N2 ⌋. For a fixed symmetric parity sequences and 1 ⩽ i ⩽ N ,
we introduce

ϱi =
i∑

j=1

sj , κ =
1

2
ϱN =

1

2

N∑
i=1

si =
1

2
(m− n). (4.20)

Since s is symmetric, we always have ϱi + ϱτi = 2κ. By convention ρ0 = 0.
We define the following generating series, for 0 ⩽ i ⩽ N and 1 ⩽ j < N ,

(1) if N = 2ℓ is even, then we set
bj(u) =

√
−1 fj(u+

κ−ϱj
2 ), (4.21)

hi(u) = d̃i(u+ κ−ϱi
2 )di+1(u+ κ−ϱi

2 ); (4.22)
(2) if N = 2ℓ+ 1 is odd, then we set

bj(u) =
√
−1fj(u+

κ−ϱj
2 ), (4.23)

hi(u) =


d̃i(u+ κ−ϱi

2 )di+1(u+ κ−ϱi
2 ), if i ̸= ℓ, ℓ+ 1,(

1 +
sℓ+1

4u

)
d̃i(u+

sℓ+1

4 )di+1(u+
sℓ+1

4 ), if i = ℓ,(
1− sℓ+1

4u

)
d̃i(u− sℓ+1

4 )di+1(u− sℓ+1

4 ), if i = ℓ+ 1.

(4.24)

Here we set d0(u) = dN+1(u) = 1. Clearly, we have
N∏
i=0

hi
(
u− κ−ϱi

2

)
= 1− δN,odd

1

16u2
. (4.25)

Remark 4.13. Note that our special shifts satisfy
κ − ϱi

2
+

κ − ϱτi
2

= 0.

The purpose to multiply
√
−1 is to change a sign so that it matches with the relations in Definition 2.1. The

other modifications become apparent later in the calculation of relations of low rank cases.

It follows from Lemma 4.8 that
hτi(u) = hi(−u), (4.26)

bi(u) = −
√
−1 eτi(−u+ κ−ϱτi

2 ). (4.27)

In particular, if N = 2ℓ is even, then hℓ(u) is an even series in u−1. Moreover, we have

η(hi(u)) = hi(u), η(bi(u)) = −bτi(−u)(−1)|i||i+1|+|i|. (4.28)
Introduce hi,r and bj,r for 0 ⩽ i ⩽ N , 1 ⩽ j < N , and r ∈ N as follows,

hi(u) = 1 +
∑
r⩾0

hi,ru
−r−1, bj(u) =

∑
r⩾0

bj,ru
−r−1, (4.29)

namely they are coefficients of hi(u) and bj(u).

Definition 4.14. The special twisted super Yangian SYs is the subalgebra of Ys generated by bi,r and hi,r for
1 ⩽ i < N and r ∈ N.

Define the root vectors bα,r = bji;r for α = αi + · · ·+ αj−1 with 1 ⩽ i < j ⩽ N and r ∈ N recursively
as follows,

bαi,r = bi+1,i;r = bi,r, bα,r = bji;r = [bj−1,0, bj−1,i;r]. (4.30)
Recall the sets from (2.13),

I0̸= = {1, . . . , ℓ− 1}, I0= = {ℓ}, if N = 2ℓ;

I0̸= = {1, . . . , ℓ}, I0= = ∅, if N = 2ℓ+ 1.
(4.31)
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Proposition 4.15. The ordered super monomials of

{bα,r, h0,2r, hi,r, hj,2r+1 | α ∈ R+, i ∈ I0̸=, j ∈ I0=, r ∈ N} (4.32)

(with respect to any fixed total ordering) are linearly independent in Ys. In particular, the ordered super
monomials of

{bα,r, hi,r, hj,2r+1 | α ∈ R+, i ∈ I0̸=, j ∈ I0=, r ∈ N}

(with respect to any fixed total ordering) are linearly independent in SYs.

Proof. Let b̄α;r, h̄i,r be the images of bα;r, hi,r in the associated graded superalgebra grYs, respectively. Then
by (3.20), we have

b̄αi;r =
√
−1 si+1

(
ei+1,i + (−1)rei′−1,i′

)
zr,

h̄0,r = s1
(
e11 + (−1)reNN )

)
zr,

h̄i,r =
(
si+1ei+1,i+1 − sieii + (−1)r(si+1ei′−1,i′−1 − siei′i′)

)
zr.

(4.33)

If 1 ⩽ i < j ⩽ N , we set α = αi + · · ·+ αj−1. Then it follows from (4.30) that

b̄α,r ∈ ςα
(
fα + (−1)rϑ(fα)

)
zr +

∑
1⩽i<N

Ch̄i,r

+
∑

µ:ht(µ)<ht(α)

C
(
fµ + (−1)rϑ(fµ)

)
zr,

(4.34)

where ςα ∈ C× and ht(µ) denotes the height of the root µ. It follows from (4.33), (4.34) and the PBW
theorem that the images of the ordered super monomials of these elements are linearly independent in the
associated graded superalgebra grYs ∼= U(gls[z]ϑ), completing the proof. □

We will see soon that they actually form a basis for the corresponding superalgebras.

5. Main results

5.1. Explicit isomorphism. In this subsection we discuss the explicit isomorphism between the twisted
super Yangian Ys

ı defined in Drinfeld type presentation and the (special) twisted super Yangians constructed
via R-matrix presentation.

Theorem 5.1. There is a superalgebra isomorphism

Φ :Ys
ı → SYs,

hi,r 7→ hi,r, bi,r 7→ bi,r,
(5.1)

for i ∈ I0, r ∈ N.

Proof. In the next section, we shall prove that the defining relations for Ys
ı are satisfied by the generators

hi,r, bi,r of Xs constructed by Gauss decomposition; see (4.21)–(4.24) and (4.29). We first verify these
relations for small rank cases and apply the shift homomorphism (see Proposition 4.5 and Lemma 4.9) to
obtain the general case. Since SYs is a subquotient of Xs, these relations also hold in SYs, proving that Φ is
a superalgebra homomorphism.

By Definition 4.14 that Φ is surjective. Therefore, it suffices to show that Φ is injective which reduces to
prove that a spanning set of Ys

ı is sent to a set of linearly independent vectors of SYs.
By Proposition 2.4, the ordered super monomials of the elements in the set (2.14) with the index sets given

by (2.13) in Ys
ı form a spanning set of Ys

ı . It is clear from (2.12) and (4.30) that Φ sends bα,r to bα,r for
α ∈ R+ and r ∈ N. Thus, these ordered super monomials are sent via Φ to the ordered super monomials of
the elements in the set (4.32) in SYs which are linearly independent in SYs by Proposition 4.15. □
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Corollary 5.2. The ordered super monomials of{
bα,r, hi,r, hj,2r+1|α ∈ R+, i ∈ I0̸=, j ∈ I0=, r ∈ N

}
(5.2)

(with respect to any fixed total ordering) form a basis of Ys
ı (resp. SYs).

We can also obtain a Drinfeld type presentation for the twisted super Yangian Ys. To that end, we use the
following notation.

Set τ(0) = N , τ(N) = 0, c0i = −s1δ1i and cNi = −sNδN−1,i.

Theorem 5.3. The twisted super Yangian Ys is isomorphic to the unital superalgebra generated by hi,r, bj,r,
0 ⩽ i ⩽ N , 1 ⩽ j < N , r ∈ N, where |hi,r| = 0̄ is even and bj,r is of parity |αj |, subject to the relations
(2.1)–(2.8), (4.25), and h0(u) = hN (−u). Moreover, the ordered super monomials of

{bα,r, h0,2r, hi,r, hj,2r+1 | α ∈ R+, i ∈ I0̸=, j ∈ I0=, r ∈ N} (5.3)

(with respect to any fixed total ordering) form a basis of Ys.

Proof. Let Ys
ı be the superalgebra generated by hi,r, bj,r for 0 ⩽ i ⩽ N , 1 ⩽ j < N , r ∈ N subject to

the relations (2.1)–(2.8), (4.25), and h0(u) = hN (−u). Similar to the proof of Theorem 5.1, there is a
superalgebra homomorphism

Ξ : Ys
ı → Ys, hi,r 7→ hi,r, bj,r 7→ bj,r.

Indeed, in the next section, the relations (2.1)–(2.8) are satisfied in the extended twisted super Yangian Xs

and hence in Ys. The relation (4.25) holds by its construction. By Proposition 3.4, Lemma 4.8, and the
definition of hi(u) in (4.22) and (4.24), the unitary relation (3.12) or (3.14) is equivalent to d1(u) = d̃N (−u),
i.e. h0(u) = hN (−u).

It remains to prove that Ξ is an isomorphism. By Lemma 4.12 and (4.27), Ξ is surjective. Then we prove
the injectivity. By the relation (4.25) and h0(u) = hN (−u), we conclude that

h0
(
u− κ

2

)
h0

(
− u− κ

2

)
=

(
1− δN,odd

1

16u2

) ∏
1⩽i<N

hi
(
u− κ−ϱi

2

)−1
,

where ϱi and κ are defined in (4.20). Therefore, h0,2s+1 for s ∈ N can be expressed as polynomials in h0,2r
and hi,r for 1 ⩽ i < N and r ∈ N. Thus, arguing as in Proposition 2.4, we prove that the ordered super
monomials in the elements of (5.3) span the superalgebra Ys

ı . By Proposition 4.15, the images of these
ordered super monomials under Ξ are linearly independent and hence these ordered super monomials form a
basis of Ys

ı , establishing the injectivity of Ξ. □

5.2. Center of twisted super Yangians. As an application, we take the chance to discuss a set of algebraically
independent generators of the center Ys in terms of the generating series di(u) for i ∈ I.

For a parity sequence, we introduce the following numbers γi, i ∈ I, by the rule:

γ1 = κ − 1
2s1 γi+1 = γi − 1

2(si + si+1). (5.4)

Note that we always have
γi + γi′ = 0, i ∈ I. (5.5)

Define the quantum Berezinian of the matrix X(u) by

Ber s(u) =
N∏
i=1

di(u+ γi)
si . (5.6)

For instance, if N = 2 and N = 3, then the corresponding Ber (u) are, respectively, given by

d1(u+ s1+s2
4 )s1d2(u− s1+s2

4 )s2 , d1(u+ s1+s2
2 )s1d2(u)

s2d3(u− s1+s2
2 )s3 .
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Note that by Lemma 4.8 and (5.5) we have

dN (u+ γN )sN · · · dℓ(u+ γN+1−ℓ)
sN+1−ℓ =

ℓ∏
i=1

di′(u+ γi′)
si′ =

( ℓ∏
i=1

di(−u+ γi)
si
)−1

. (5.7)

Set

Cs(u) =
ℓ∏

i=1

di(u+ γi)
si .

It follows from (5.7) that

Ber s(u) =

{
Cs(u)Cs(−u)−1, if N = 2ℓ,

Cs(u)dℓ+1(u)
sℓ+1Cs(−u)−1, if N = 2ℓ+ 1.

(5.8)

Recall c(u) from (3.16) and note that c(u) = 1 in Ys; see (3.14) and Proposition 3.4. Then it follows from
Lemma 4.8 that

Ber s(u)Ber s(−u) = 1. (5.9)
Define the elements Cr ∈ Ys by

Ber s(u) = 1 +
∑
r⩾1

Cru−r.

Denote by ZYs the center of the twisted super Yangian Ys.

Theorem 5.4. We have the following statements.
(1) The coefficients Cr of the series Ber s(u) are central in Ys.
(2) The elements C2r+1 for r ∈ N are algebraic free generators of the center ZYs of Ys.
(3) We have SYs = Y(sls) ∩ Ys.

Proof. (1) By Lemma 4.10, we have [di(u), dj(v)] = 0 for 1 ⩽ i, j ⩽ N . Thus it suffices, by Lemma 4.8
and Lemma 4.12, to verify that

[Ber s(u), ei(v)] = [Ber s(u), fi(v)] = 0, 1 ⩽ i ⩽ ℓ := ⌊N2 ⌋.
Recall the definition of Y(gls[ℓ]) from (3.15). By (3.11), there is a homomorphism from

Y(gls[ℓ]) → Ys, tij(u) 7→ xij(u), 1 ⩽ i, j ⩽ ℓ,

see also Proposition 6.1 below. Thus if i < ℓ, then by [Tsy20, Thm. 2.43] we have Cs(u) commutes
with ei(v) and fi(v) if 1 ⩽ i < ℓ. Hence it follows from Lemma 4.10 and (5.8) that [Ber s(u), ei(v)] =
[Ber s(u), fi(v)] = 0 for 1 ⩽ i < ℓ.

It remains to verify that [Ber s(u), eℓ(v)] = [Ber s(u), fℓ(v)] = 0. Again by Lemma 4.10, it reduces to
verify the statement for the case N = 2, 3 which will be done in Lemma 6.7 and Lemma 6.16 below.

(2) It follows from (5.9) that C2r can be expressed by Ci for i < 2r. Thus it is easy to see by induction that
all Ci can be expressed in terms of C2r+1 for r ∈ N. It suffices to prove the statement in the associated graded
superalgebra grYs. Let Ci be the image of Ci in the (i− 1)-st component of grYs.

Recall from Section 3.3 that grYs ∼= U(gls[z]ϑ). By (3.20), one easily sees that

C2r+1 = 2Iz2r, I = e11 + · · ·+ eNN .

To complete the proof, it suffices to show that the center of the superalgebra U(gls[z]ϑ) is generated by the
elements Iz2r with r ∈ N. The rest is very similar to [MNO96, Prop. 4.10] and [Gow07, Lem. 6]. We sketch
the proof.

Instead of working on the twisted current superalgebra U(gls[z]ϑ), we consider another twisted current
superalgebra U(gls[z]ϖ) defined as follows, see e.g. [MR02, Lu23b]. Let ι = (ι1, · · · , ιN ) be a sequence
such that ιi = 1 for 1 ⩽ i ⩽ ℓ and ιi = −1 otherwise. Let ϖ be the involution of gls defined by

ϖ : gls → gls, eij 7→ ιiιjeij .
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Let gls0̄ be the fixed point subalgebra under ϖ and gls1̄ the eigenspace of ϖ associated to the eigenvalue −1,

gls0̄ = C⟨eij : ιi = ιj , i, j ∈ I⟩ ∼= gls[1,ℓ] ⊕ gls(ℓ,N ] , gls1̄ = C⟨eij : ιi ̸= ιj , i, j ∈ I⟩.

Then set
gls[z]ϖ = gls0̄ ⊕ gls1̄z ⊕ gls0̄z

2 ⊕ gls1̄z
3 ⊕ · · · .

The superalgebras gls[z]ϖ and gls[z]ϑ are isomorphic by a conjugation. Under this isomorphism, Iz2r in
gls[z]ϖ corresponds to Iz2r in gls[z]ϑ. Let S(gls[z]ϖ) denote the supersymmetric algebra of gls[z]ϖ. It
suffices to prove the corresponding result for S(gls[z]ϖ).

If N = 2, then by our assumption, s1 = s2. Thus all elements in the superalgebra Ys are even. Hence this
follows from the corresponding result for nonsuper case; see [MR02, Thm. 3.4] and [LZ24, Thm. 6.19].

If N ⩾ 3, then it is easy to see that the gls0̄-module gls1̄ has no invariant elements. Thus using the same
arguments in [MNO96, Prop. 2.12 & Prop. 4.10], one proves that the center is contained in the subalgebra
S(gls0̄[z

2]), where S(gls0̄[z
2]) denote the supersymmetric algebra of gls0̄[z

2]. Since gls0̄
∼= gls[1,ℓ] ⊕ gls(ℓ,N ] ,

by [Gow07, Lem. 6] for gls0̄[z], the center is contained in the subalgebra generated by
∑ℓ

i=1 eiiz
2r and∑N

i=ℓ+1 eiiz
2r for r ∈ N. Note that the center supercommutes with gls1̄z. Then again by the argument in

[MNO96, Prop. 2.12], one finds that the center is further contained in the subalgebra generated by Iz2r for
r ∈ N, completing the proof.

(3) It is clear by the definition of Y(sls) and the Gauss decomposition that SYs ⊂ Y(sls) ∩ Ys. Thus,
to show the equality, it suffices to note that we have the corresponding equality in grY(gls) (recall that the
filtration on Ys is induced from the one on Y(gls)). □

Recall that m is the number of 1’s in the parity sequence s while n = N −m.

Proposition 5.5. We have the following statements.
(1) If m ̸= n, then we have a superalgebra isomorphism Ys ∼= ZYs ⊗ SYs.
(2) If m = n, then ZYs ⊂ SYs.

Proof. (1) As e.g. [LWZ23, Lem. 3.11], one verifies that Ys = ZYs · SYs, where the condition m ̸= n is
needed. Thus it suffices to show that ZYs ∩ SYs = {1}. Again, it reduces to the associated graded level
which follows easily from

U(gls[z]ϑ) = C[Iz2r]r⩾0 ⊗U(sls[z]ϑ), (5.10)
as the image of SYs in grYs equals U(sls[z]ϑ).

(2) Note that s is symmetric. If m = n, then m = n is even and hence N = 2ℓ with ℓ even. Moreover,
the number of 1’s in s[1,ℓ] is the same as the number of −1’s. Recall di(u) = d̃i′(−u) from Lemma 4.8 and
γi = γi′ from (5.5). Now it suffices to show that Cs(u) can be written as a product of hj(v) and hj(v)−1

with various v. This is essentially the same as [Tsy20, Thm. 2.48(b)]. □

Remark 5.6. It would be interesting to construct the super analogues of Sklyanin determinant of S(u) and
compare it with the central series Ber s(u); cf. [MR02, Thm. 3.4].

5.3. Isomorphism between different parity sequences. In this subsection, we discuss the relations between
twisted super Yangians associated to different symmetric parity sequences.

Let s, s̃ be parity sequences in Sm|n, then it is well known that Y(gls) ∼= Y(gls̃); see e.g. [HLM19,Tsy20].
Specifically, take any σ in the symmetric group SN such that si = s̃σ(i) for i ∈ I, then the map

Ps
σ : Y(gls) → Y(gls̃), tij(u) 7→ tσ(i)σ(j)(u) (5.11)

defines a superalgebra isomorphism. Recall Ms
g(u) from (3.4). Clearly, we have

Ps
σ ◦Ms

g(u) = Ms̃
g(u) ◦P

s
σ.

Thus we further have Y(sls) ∼= Y(sls̃).
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Let s, s̃ be symmetric in Sm|n, then Ys ∼= Ys̃ and Xs ∼= Xs̃. Specifically, take any σ in the symmetric
group SN such that si = s̃σ(i) and σ(i)′ = σ(i′) for i ∈ I, then the map

Qs
σ : Xs → Xs̃, xij(u) 7→ xσ(i)σ(j)(u)

defines a superalgebra isomorphism. By Proposition 3.4, Qσ(c
s(u)) = cs̃(u) and hence we obtain the

superalgebra isomorphism
Ps

σ : Ys → Ys̃, xij(u) 7→ xσ(i)σ(j)(u). (5.12)
Here we use the same symbol Ps

σ as the isomorphism (5.12) is compatible with (5.11) by restriction if we
regard Ys and Ys̃ as subalgebras of Y(gls) and Y(gls̃) via (3.17), respectively.

Theorem 5.7. Let s, s̃ be symmetric parity sequences in Sm|n, then Ys
ı
∼= Ys̃

ı , i.e. the twisted super Yangians
are independent of the choice of symmetric parity sequences in Sm|n (does depend on m and n).

Proof. Note that the superalgebras Ys (resp. Y(sls) ) and Ys̃ (resp. Y(sls̃)) are isomorphic via the restriction
of Ps

σ in (5.11). Then the statement follows from Theorem 5.1 and Theorem 5.4 (3). □

5.4. Quantum Berezinians in different parity sequences. In this subsection, we discuss the relations
between quantum Berezinians in different parity sequences; see e.g. [HM20, CH23] for the results of
more general Manin (super)matrices or super Yangians of type A (cf. also [Tsy20, Lu22]). We first recall
[HM20, Prop. 3.6] and show by example how it implies [HM20, Thm. 4.5].

Let A be a superalgebra. We call the operators of the form

K =
∑
i,j∈I

Kij ⊗ Eij(−1)|i||j|+|j| ∈ A⊗ End(Cs),

a matrix of parity sequence s if Kij are elements of A of parity |i|+ |j| (determined by s). We simply write
it as K = (Kij)i,j∈I.

We say that K is a Manin matrix of parity sequence s if K is of parity sequence s and

[Kij ,Kkl] = (−1)|i||j|+|i||k|+|j||k|[Kkj ,Kil]

for all i, j, k, l ∈ I, cf. (3.1).
The symmetric group SN acts on matrices and parity sequences by the following rule. For σ ∈ SN , we

set σ(K) = (Kσ−1(i),σ−1(j))i,j∈I and σ(s) = (sσ−1(1), · · · , sσ−1(N)). By [HM20, Lem. 3.3], if K is a Manin
matrix of parity sequence s, then σ(K) is a Manin matrix of parity sequence σ(s).

Suppose that K is a Manin matrix of parity sequence s and has a Gauss decomposition (see Section 4.1)
with the entries of the diagonal matrix given by D = diag(D1, · · · ,DN ). Here and below, we shall always
assume that Di are invertible for any choice of s.

Define the Berezinian of K associated to the parity sequence s by

Ber s(K) = Ds1
1 Ds2

2 · · · DsN
N .

The following shows that the action of the symmetric group SN does not change the Berezinian.

Proposition 5.8 ([HM20, Prop 3.6]). Let K be a Manin matrix of parity sequence s and σ ∈ SN . Then

Ber s(K) = Ber σ(s)(σ(K)).

It is well known that T s(u)e−∂u is a Manin matrix of parity sequence s, where T s(u) is the generating
matrix of the super Yangian Y(gls) and e−∂u is the difference operator, i.e. e−∂uf(u) = f(u − 1) for any
function f(u) in u; see e.g. [MR14]. Suppose the diagonal matrix in the Gauss decomposition of T s(u)
is given by Ds(u) = diag(Ds

1(u), · · · ,Ds
N (u)). Then the diagonal matrix in the Gauss decomposition of

T s(u)e−∂u is given by
Ds(u)e−∂u = diag(Ds

1(u)e
−∂u , · · · ,Ds

N (u)e−∂u).

Let us consider the following example which was used in [LM21, §4.3] and [Lu21, §3.4].



24 KANG LU

Example 5.9. Let m = n = 1. Set s = (1,−1) and s̃ = (−1, 1). Let σ = (1, 2) be the simple permutation.
The matrix K is a Manin matrix of parity sequence s if and only if

[K11,K21] = [K22,K21] = [K21,K21] = 0, [K11,K22] = [K12,K21].

Then the Berezinians of K associated to parity sequence s and s̃ are given by
Ber s(K) = K11(K22 −K21K

−1
11 K12)

−1,

Ber s̃(σ(K)) = K−1
22 (K11 −K12K

−1
22 K21).

It is straightforward to check that Ber s(K) = Ber s̃(σ(K)).
If K = T (u)se−∂u , then Ds

1(u) = ts11(u) and Ds
2(u) = ts22(u) − ts21(u)t

s
11(u)

−1ts12(u) while σ(K) =
T s̃(u)e−∂u , Ds̃

1(u) = ts̃11(u) = ts22(u) and Ds̃
2(u) = ts11(u) − ts12(u)t

s
22(u)

−1ts21(u). In terms of Gaussian
generators, we have

Ber s(K) = Ds
1(u)e

−∂u
(
Ds

2(u)e
−∂u

)−1
=

(
Ds̃

1(u)e
−∂u

)−1
Ds̃

2(u)e
−∂u , (5.13)

which implies further
Ds

1(u)D
s
2(u)

−1 = Ds̃
1(u+ 1)−1Ds̃

2(u+ 1). (5.14)
This shows the equality in [Lu21, Rem. 3.11] and [Lu22, Ex. 3.2]; see also [CH23, Lem. 4.3].

The general case is no different and one obtains immediately the following. Let ℘s
1 = 0 if s1 = 1 and

℘s
1 = 1 if s1 = −1.1 Define ℘s

i recursively for 2 ⩽ i ⩽ N by ℘s
i+1 = ℘s

i − 1
2(si + si+1), cf. (5.4).

The following is a corollary of Proposition 5.8 with Proposition 5.10 which recovers [CH23, Thm. 4.5]
(with all difference operators moved to the right and then dropped). It was previously used in [Lu21, Lem. 2.2]
and [Lu22, Ex. 3.3]. Recall Ps

σ from (5.11).
Proposition 5.10. We have

Ber s(T s(u)e−∂u) =
( N∏

i=1

Ds
i (u+ ℘s

i )
si
)
e−(m−n)∂u .

In particular,

Ps
σ :

N∏
i=1

Ds
i (u+ ℘s

i )
si 7→

N∏
i=1

Ds̃
i (u+ ℘s̃

i )
s̃i .

Recall Ber s(u) from (5.4)–(5.6). Then we have the following. (Note that Ber (u) is the Berezinian of the
matrix X(u)e−∂u defined in this subsection.)
Theorem 5.11. Let s, s̃ be two symmetric parity sequences in Sm|n. If we identify the superalgebras Ys and
Ys̃ via the isomorphism (5.12), then we have Ber s(u) = Ber s̃(u).
Proof. Note that if N = 2ℓ+1, then the parity sℓ is fixed and depends on the parity of m and n. Note that m
and n cannot be both odd. In addition, a symmetric parity sequence s is determined by its parity subsequence
s[1,ℓ]. Let s̃ be another symmetric parity sequence in Sm|n. Then a permutation σ ∈ SN with si = s̃σ(i) and
σ(i)′ = σ(i′) for i ∈ I can be chosen to satisfy the property that {1, · · · , ℓ} is invariant under σ.

Moreover, if N = 2ℓ+1, then, by the quasi-determinant presentation of di(u) in (4.1), the series dℓ+1(u)
remains the same under the permutation σ we choose. Thus, by (5.8), it suffices to show that Cs(u) is
independent of s.

Recall the definition of Y(gls[ℓ]) from (3.15). By (3.11), there is a homomorphism from

Y(gls[ℓ]) → Ys, tij(u) 7→ xij(u), 1 ⩽ i, j ⩽ ℓ,

see also Proposition 6.1 below. Moreover, the homomorphism sends Di(u) to di(u) for 1 ⩽ i ⩽ ℓ. Recall
from (5.4) that γ1 = κ − 1

2s1. Since κ remains the same for all symmetric parity sequences, the claims
follows from Proposition 5.10. □

1The definition is clear from (5.13)–(5.14) as if s1 = −1 one has to move e∂u through to the right which creates a shift by 1.
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6. Relations between Gaussian generators

In this section, we work out the relations of type A and the relations between Gaussian generators when
N = 2, 3, 4, 5. For low rank situation, there will be two main cases, i.e. with a fixed point (N = 2, 4) for the
the Dynkin diagram automorphism τ and without a fixed point (N = 3, 5).

6.1. Relations of type A. Suppose N ⩾ 2m ⩾ 4. Recall the definition of Y(gls[m]) from (3.15). By (3.11),
there is a homomorphism from

Y(gls[m]) → Ys, tij(u) 7→ xij(u), 1 ⩽ i, j ⩽ m.

Therefore, the relations among di(u), ej(v), fk(w) for 1 ⩽ i ⩽ m and 1 ⩽ j, k < m are the same as those
in Y(gls[m]). These relations are given in [Gow07, Pen16, Tsy20] which we shall list below.

Let ℓ = ⌊N2 ⌋. For 1 ⩽ i < ℓ, set

e◦i (u) =
∑
r⩾2

e
(r)
i u−r, f◦i (u) =

∑
r⩾2

e
(r)
i u−r, ζi(u) = d̃i(u)di+1(u).

Proposition 6.1. The following relations hold in Xs, with the conditions on the indices 1 ⩽ i, j < ℓ and
1 ⩽ k, l ⩽ ℓ,

[dk(u), dk(v)] = 0,

[ei(u), fj(v)] = δijsi+1
ζi(u)− ζi(v)

u− v
,

[dk(u), ej(v)] = sk(δk,j+1 − δkj)
dk(u)(ej(u)− ej(v))

u− v
,

[dk(u), fj(v)] = sk(δkj − δk,j+1)
(fj(u)− fj(v))dk(u)

u− v
,

[ei(u), ei(v)] = si
(ei(u)− ei(v))

2

u− v
,

[fi(u), fi(v)] = −si
(fi(u)− fi(v))

2

u− v
,

[ei(u), ej(v)] = [fi(u), fj(v)] = 0, if cij = 0.

Moreover, we have, for 1 ⩽ i ⩽ ℓ− 2,

u[e◦i (u), ei+1(v)]− v[ei(u), e
◦
i+1(v)] = si+1ei(u)ei+1(v),

u[fi+1(v), f
◦
i (u)]− v[f◦i+1(v), fi(u)] = si+1fi+1(v)fi(u),

and the cubic Serre relations, for 1 ⩽ i, j < ℓ with |i− j| = 1,[
ei(u), [ei(v), ej(w)]

]
+
[
ei(v), [ei(u), ej(w)]

]
= 0,[

fi(u), [fi(v), fj(w)]
]
+
[
fi(v), [fi(u), fj(w)]

]
= 0,

and the quartic Serre relations, for 1 ⩽ i < ℓ− 1, |αi| = 1̄, |αi−1| = |αi+1| = 0̄,[
[ei−1(u), e

(1)
i ], [e

(1)
i , ei+1(v)]

]
=

[
[fi−1(u), f

(1)
i ], [f

(1)
i , fi+1(v)]

]
= 0.

Comparing to [LZ24], the quartic Serre relation is new. We verify the relation (2.6) here. By Proposition
2.6 (and its proof), it suffices to establish the following.

Lemma 6.2. If i+ 1 ⩽ ⌊N2 ⌋ or i− 1 ⩾ ⌊N+1
2 ⌋, then[

[e
(1)
i−1, e

(1)
i ], [e

(1)
i , e

(1)
i+1]

]
=

[
[f

(1)
i−1, f

(1)
i ], [f

(1)
i , f

(1)
i+1]

]
= 0.
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Proof. We first consider the case i+ 1 ⩽ ⌊N2 ⌋ and
[
[e

(1)
i−1, e

(1)
i ], [e

(1)
i , e

(1)
i+1]

]
. By (3.11), we have

[x
(1)
i−1,i, x

(1)
i,i+1] = six

(1)
i−1,i+1, [x

(1)
i,i+1, x

(1)
i+1,i+2] = si+1x

(1)
i,i+2.

Again by (3.11), we have [x
(1)
i−1,i+1, x

(1)
i,i+2] = 0. Since e(1)j = x

(1)
j,j+1, the desired relation follows.

The other situations are obtained by applying the anti-automorphism η and Lemma 4.8 to[
[e

(1)
i−1, e

(1)
i ], [e

(1)
i , e

(1)
i+1]

]
= 0;

see also Lemma 4.11. □

Recall Lemma 4.8 and the definition of hi(u), bi(u) from (4.21)–(4.24). It is clear that the commutator
relations (2.1)–(2.6) between the generating series hi(u), bi(u) for i not close to ℓ can be deduced from the
relations listed in Proposition 6.1 (exactly as Y(sls[ℓ])) and Lemma 6.2; see also Lemma 2.3 and Lemma 4.10.
Thus, we are left with verifying the relations for i close to ℓ. By Lemma 4.9, it suffices to do that for the case
when N is small, namely N = 2, 3, 4, 5. Note that the case N = 4, 5 is mainly for the Serre relations.

6.2. Relations in the case N = 2. In this case, we have s1 = s2. All elements here are even.

Lemma 6.3. We have the following relations in X(s1,s2),

[di(u), dj(v)] = 0, (6.1)
e(u) = −f(−u), (6.2)

d̃1(u)d2(u) = d̃1(−u)d2(−u), (6.3)

[d1(u), f(v)] =
s1

u− v
(f(u)− f(v))d1(u) +

s1
u+ v

d1(u)(e(u) + f(v)), (6.4)

[d2(u), f(v)] =
s1

u− v
(f(v)− f(u))d2(u)−

s1
u+ v

d2(u)(e(u) + f(v)), (6.5)

[f(u), f(v)] = − s1
u− v

(f(u)− f(v))2 +
s1

u+ v

(
d̃1(u)d2(u)− d̃1(v)d2(v)

)
. (6.6)

Proof. Equations (6.1)–(6.3) follow directly from Lemma 4.8 and Lemma 4.10.
Equations (6.4)–(6.5) . Setting i = j = k = 1 and l = 2 in (3.11) and using (6.1), we have

(u2 − v2)[d1(u), e(v)] = s1(u+ v)d1(u)(e(v)− e(u))− s1(u− v)(e(v) + f(u))d1(u). (6.7)

Thus (6.4) follows from (6.2) and (6.7). By Lemma 4.8, we have d2(u) = c(u)d̃1(−u). Note that c(u) is
central. Therefore (6.5) follow from (6.2) and (6.4).

Equation (6.6) . Setting i = k = 1 and j = l = 2, we have

(u+ v)[x12(u), x12(v)] = s1
(
[x12(u), x12(v)] + x11(u)x22(v)− x11(v)x22(u)

)
.

Rewriting it in terms of Gaussian generating series, we obtain
d1(u)e(u)d1(v)e(v)− d1(v)e(v)d1(u)e(u)

=
s1

u+ v

(
d1(u)e(u)d1(v)e(v)− d1(v)e(v)d1(u)e(u) + d1(u)d2(v)

+ d1(u)f(v)d1(v)e(v)− d1(v)d2(u)− d1(v)f(u)d1(u)e(u)
) (6.8)

By (6.7), we have

e(v)d1(u) = d1(u)e(v)−
s1

u− v
d1(u)(e(v)− e(u)) +

s1
u+ v

(e(v) + f(u))d1(u). (6.9)

Using (6.9) to commute e(u)d1(v) and e(v)d1(u) in (6.8), we find that the l.h.s. of (6.8) is transformed to

d1(u)d1(v)[e(u), e(v)]−
s1

u− v
d1(u)d1(v)(e(u)− e(v))2
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+
s1

u+ v

(
d1(u)e(u)d1(v)e(v) + d1(u)f(v)d1(v)e(v)

− d1(v)e(v)d1(u)e(u)− d1(v)f(u)d1(u)e(u)
)
.

Thus it follows from (6.8) that

[e(u), e(v)] =
s1

u− v
(e(u)− e(v))2 − s1

u+ v

(
d̃1(u)d2(u)− d̃1(v)d2(v)

)
.

By (6.2), we obtain (6.6). □

It is convenient to use the following notation. We write
A(u, v) ≃ B(u, v)

if A(u, v) and B(u, v) have the same coefficients of u−r−1v−s−1 for r, s ∈ N. We sometimes use the same
notation for the case r ∈ Z and s ∈ N. When the case r ∈ Z is used, we will clarify it further.

Recall b(u) =
√
−1f(u) and h(u) = d̃1(u)d2(u) from (4.21) and (4.22), respectively. Here we drop the

subscript i as the rank is one.
Lemma 6.4. We have the relations in X(s1,s2) in terms of generating series,

[h(u), h(v)] = 0, h(u) = h(−u),

[b(u), b(v)] = − s1
u− v

(b(u)− b(v))2 − s1
u+ v

(h(u)− h(v)),

[h(u), b(v)] ≃ 1

u2 − v2
(
(2s1v + 1)h(u)b(v) + (2s1v − 1)b(v)h(u)

)
.

Proof. The proof is parallel to that of [LWZ23, Lem. 4.2]. □

Proposition 6.5. In terms of components, we have
[hr, hs] = 0,

[br+1, bs]− [br, bs+1] = s1
(
brbs + bsbr

)
− 2(−1)rs1hr+s+1,

[hr+2, bs]− [hr, bs+2] = 2s1(bs+1hr + hrbs+1) + [hr, bs].

Here in the last equality we allow r ∈ Z with h−1 = 1 and hr = 0 for r < −1.
Proof. The proof is parallel to that of [LWZ23, Prop. 4.3] by taking the coefficients of u−r−1v−s−1 for
r, s ∈ N from the relations (expanded in the region |u| ≫ |v|) in Lemma 6.4. Note that we can take r ∈ Z in
the third relation as the power of v in the terms we dropped are nonnegative; see the proof of [LZ24, Prop.
7.16] for more detail. □

Remark 6.6. If we set b(u) = f(u), then we have

[b(u), b(v)] = − s1
u− v

(b(u)− b(v))2 +
s1

u+ v
(h(u)− h(v)).

The purpose to use b(u) =
√
−1f(u) is to change + above to − so that it will match with the nonsuper split

case in [LWZ23].
Lemma 6.7. The coefficients of d1(u)d2(u− s1) are central elements in Xs.
Proof. Since [di(u), dj(v)] = 0 and e(u) = −f(−u) by (6.1) and (6.2), respectively, it suffices to prove that
[d1(u)d2(u − s1), f(v)] = 0. By ignoring the terms like f(u)d1(u) and d1(u)e(u) in (6.4) and (6.5) (as
these series do not contribute if we expand them in the region |u| ≫ |v|), we have

d1(u)f(v) ≃
(u+ v)(u− v − s1)

(u+ v − s1)(u− v)
f(v)d1(u),

d2(u)f(v) ≃
(u+ v)(u− v + s1)

(u+ v + s1)(u− v)
f(v)d2(u).

Thus d1(u)d2(u− s1)f(v) ≃ f(v)d1(u)d2(u− s1) and the statement follows. □



28 KANG LU

6.3. Relations in the caseN = 4. Let us consider the caseN = 4 with s = (s1, s2, s3, s4) such that s1 = s4
and s2 = s3. Thanks to Lemma 4.9, we have the shift homomorphism

ψs
1 : X(s2,s3) → Xs, di(u) → di+1(u), e(u) 7→ e2(u), f(u) 7→ f2(u).

Thus, by Lemma 4.8, Lemma 6.3 and Proposition 6.1, we immediately have the following relations
[di(u), dj(v)] = [d1(u), e2(v)] = [d1(u), f2(v)] = 0, (6.10)

(u− v)[e1(u), f1(v)] = s2
(
d̃1(u)d2(u)− d̃1(v)d2(v)

)
, (6.11)

(u− v)[e1(u), e1(v)] = s1(e1(u)− e1(v))
2, (6.12)

(u− v)[d1(u), e1(v)] = s1d1(u)(e1(v)− e1(u)), (6.13)
(u− v)[d2(u), e1(v)] = s2d2(u)(e1(u)− e1(v)), (6.14)
(u− v)[d1(u), f1(v)] = s1(f1(u)− f1(v))d1(u), (6.15)

[e2(u), e2(v)] =
s2

u− v

(
e2(u)− e2(v)

)2 − s2
u+ v

(
d̃2(u)d3(u)− d̃2(v)d3(v)

)
. (6.16)

We reformulate (6.12) when |α1| = 1̄ is odd for later use.

Lemma 6.8. If s1 ̸= s2, then the relation (6.12) is equivalent to [e1(u), e1(v)] = 0.

Proof. It is straightforward since if s1 ̸= s2, then the LHS of (6.12) is anti-symmetric in u, v while the RHS
of (6.12) is symmetric in u, v. □

Lemma 6.9. We have
(u− v)[e1(u), e2(v)] = s2

(
e1(u)e2(v)− e1(v)e2(v)− e13(u) + e13(v)

)
, (6.17)

(u− v)[f2(v), f1(u)] = s2
(
f2(v)f1(u)− f2(v)f1(v)− f31(u) + f31(v)

)
. (6.18)

Proof. By Lemma 4.8 or applying the anti-automorphism η from Lemma 4.11, it suffices to show (6.17). By
(3.11), we have

(u− v)[x12(u), x23(v)] = s2
(
x22(u)x13(v)− x22(v)x13(u)

)
.

Note that |α2| = 0̄. In terms of Gaussian generators, we have
(u− v)[d1(u)e1(u), d2(v)e2(v) + f1(v)d1(v)e13(v)]

= s2
(
d2(u) + f1(u)d1(u)e1(u)

)
d1(v)e13(v)− s2

(
d2(v) + f1(v)d1(v)e1(v)

)
d1(u)e13(u).

(6.19)

We shall transform the LHS of (6.19). Expanding the commutator, the LHS of (6.19) becomes

(u− v)
(
d1(u)e1(u)d2(v)e2(v)− d2(v)e2(v)d1(u)e1(u)

+ d1(u)e1(u)f1(v)d1(v)e13(v)− f1(v)d1(v)e13(v)d1(u)e1(u)
)
.

Permuting the products e1(u)d2(v), e2(v)d1(u), and e1(u)f1(v) using (6.14), (6.10), (6.11), respectively, we
have

d1(u)
(
(u− v)d2(v)e1(u)− s2d2(v)(e1(u)− e1(v))

)
e2(v)− (u− v)d2(v)d1(u)e2(v)e1(u)

+ d1(u)
(
(u− v)s1s2f1(v)e1(u) + s2d̃1(u)d2(u)− s2d̃1(v)d2(v)

)
d1(v)e13(v)

− (u− v)f1(v)d1(v)e13(v)d1(u)e1(u),

which simplifies further to
d1(u)d2(v)

(
(u− v)[e1(u), e2(v)]− s2(e1(u)− e1(v))e2(v)− s2e13(v)

)
+ s2d1(v)d2(u)e13(v)

+(u− v)
(
s1s2d1(u)f1(v)e1(u)d1(v)e13(v)− f1(v)d1(v)e13(v)d1(u)e1(u)

)
.

Therefore, it suffices to show that
(u− v)

(
s1s2d1(u)f1(v)e1(u)d1(v)e13(v)− f1(v)d1(v)e13(v)d1(u)e1(u)

)
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= s2
(
f1(u)d1(u)e1(u)d1(v)e13(v)− f1(v)d1(v)e1(v)d1(u)e13(u)

)
Applying (6.15), i.e. (u − v)d1(u)f1(v) − s1f1(u)d1(u) = (u − v)f1(v)d1(u) − s1f1(v)d1(u), it reduces
to show

(u− v)[d1(u)e1(u), d1(v)e13(v)] = s1
(
d1(u)e1(u)d1(v)e13(v)− d1(v)e1(v)d1(u)e13(u)

)
, (6.20)

which is equivalent to (u − v)[x12(u), x13(v)] = s1
(
x12(u)x13(v) − x12(v)x13(u)

)
and follows from

(3.11). □

Lemma 6.10. If s1 = s2 (i.e. |α1| = 0̄), then we have
[e1(u), e13(v)− e1(v)e2(v)] = −[e1(u), e2(v)]e1(u). (6.21)

Proof. It follows from (3.11) that
(u− v)[x11(u), x13(v)] = s1

(
x11(u)x13(v)− x11(v)x13(u)

)
,

which implies that
(u− v)[d1(u), e13(v)] = s1d1(u)(e13(v)− e13(u)). (6.22)

We have
s1
(
d1(u)e1(u)d1(v)e13(v)− d1(v)e1(v)d1(u)e13(u)

)
(6.13)
= d1(u)

(
s1d1(v)e1(u) +

1
u−vd1(v)(e1(u)− e1(v))

)
e13(v)

− d1(v)
(
s1d1(u)e1(v) +

1
u−vd1(u)(e1(u)− e1(v))

)
e13(u).

(6.23)

On the other hand, we also have
s1
(
d1(u)e1(u)d1(v)e13(v)− d1(v)e1(v)d1(u)e13(u)

)
(6.20)
= (u− v)

(
d1(u)e1(u)d1(v)e13(v)− d1(v)e13(v)d1(u)e1(u)

)
(6.13)(6.22)
======== d1(u)

(
(u− v)d1(v)e1(u) + s1d1(v)(e1(u)− e1(v))

)
e13(v)

− d1(v)
(
(u− v)d1(u)e13(v)− s1d1(u)(e13(v)− e13(u))

)
e1(u).

(6.24)

Combining (6.23) and (6.24), we obtain

(u− v)[e1(u), e13(v)] =
1

u− v

(
e1(u)− e1(v)

)(
e13(v)− e13(u)

)
+ s1e1(v)

(
e13(v)− e13(u)

)
− s1

(
e13(v)− e13(u)

)
e1(u).

(6.25)

To prove (6.21), it suffices to show
(u− v) [e1(u), e13(v)]

= (u− v)
(
[e1(u), e1(v)]e2(v) + e1(v)[e1(u), e2(v)]− [e1(u), e2(v)]e1(u)

)
(6.12)(6.17)
======== s1e1(u)[e1(u), e2(v)]− s1[e1(u), e1(v)e2(v)]

+ s1e1(v)
(
e13(v)− e13(u)

)
− s1

(
e13(v)− e13(u)

)
e1(u).

Therefore, by (6.25), it reduces to show

s1e1(u)[e1(u), e2(v)]− s1[e1(u), e1(v)e2(v)] =
1

u− v

(
e1(u)− e1(v)

)(
e13(v)− e13(u)

)
. (6.26)

Rewrite (u− v)
(
e1(u)[e1(u), e2(v)]− [e1(u), e1(v)e2(v)]

)
as

(u− v)
(
e1(u)[e1(u), e2(v)]− [e1(u), e1(v)]e2(v)− e1(v)[e1(u), e2(v)]

)
,

then (6.26) follows from (6.12) and (6.17). □

Lemma 6.11. We have the following Serre relation,[
e1(u), [e1(v), e2(w)]

]
+
[
e1(v), [e1(u), e2(w)]

]
= 0.
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Proof. If s1 = s2 (i.e. |α1| = 0̄), then the proof is parallel to that of [Pen16, Lemma 6.3] as the commutator
relations used in the proofs are the same, see (6.12), (6.17), (6.21). If s1 ̸= s2 (i.e. |α1| = 1̄), then the
relation follows from (6.12). □

Remark 6.12. Note that the calculations above involve only relations of nontwisted super Yangians of type
A; cf. the proof of Corollary 4.7.

Lemma 6.13. We have the following finite type Serre relation,[
e
(1)
2 , [e

(1)
2 , e

(1)
1 ]

]
= e

(1)
1 .

Proof. Note that |e(1)2 | = 0̄. By (3.11), we have
(u− v)[x13(u), x32(v)] = s2

(
x33(u)x12(v)− x33(v)x12(u)

)
.

Thus [x13(u), x
(1)
32 ] = s2x12(u) which transforms to

[d1(u)e13(u), f
(1)
2 ] = s2d1(u)e1(u).

By (6.10), we conclude that [e13(u), f
(1)
2 ] = s2e1(u). Finally, the desired relation follows from Lemma 4.8

as e2(u) = −f2(−u) implies that f (1)2 = e
(1)
2 . □

Recall bi,r and hi,r for i ∈ {1, 2, 3}, r ∈ N from (4.21), (4.22), and (4.29).

Proposition 6.14. The relations (2.1)–(2.7) hold in Xs.

Proof. The proof is similar to the proof of the nonsuper case [LZ24, Prop. 7.16] by using the relations
established in this subsection; see also Proposition 6.17 below. □

6.4. Relations in the case N = 3. In this case, we have s = (s1, s2, s3) such that s1 = s3. We start with
listing relations between Gaussian generators d1(u), d2(u), e1(u), f1(u), cf. Lemma 4.8.

Lemma 6.15. We have
[di(u), dj(v)] = 0, (6.27)

[d1(u), e1(v)] =
s1

u− v
d1(u)(e1(v)− e1(u)), (6.28)

[d1(u), f1(v)] =
s1

u− v
(f1(u)− f1(v))d1(u), (6.29)

[e1(u), e1(v)] =
s1

u− v
(e1(u)− e1(v))

2, (6.30)

[f1(u), f1(v)] = − s1
u− v

(f1(u)− f1(v))
2, (6.31)

[e1(u), f1(v)] =
s2

u− v

(
d̃1(u)d2(u)− d̃1(v)d2(v)

)
+

s2
u+ v

(
e13(u) + e1(u)f1(v) + f31(v)

)
, (6.32)

[d2(u), e1(v)] =
s2

u− v
d2(u)(e1(u)− e1(v))−

s2
u+ v

(e1(v) + f2(u))d2(u), (6.33)

[d2(u), f1(v)] =
s2

u− v
(f1(v)− f1(u))d2(u) +

s2
u+ v

d2(u)(f1(v) + e2(u)). (6.34)

Proof. We verify the essential relations as the other relations follow from the essential ones by taking the
anti-automorphism η; see Lemma 4.11.

The relation (6.27) follows from Lemma 4.10. Then (6.28) follows from (3.11) with i = j = k = 1, l = 2
and [d1(u), d1(v)] = 0. Applying the anti-automorphism η to (6.28), we obtain (6.29).

Equation (6.32) . We first claim that

(u− v)
(
[d1(u)e1(u), f1(v)d1(v)]− d1(u)[e1(u), f1(v)]d1(v)

)
= s2

(
f1(u)d1(u)e1(u)d1(v)− f1(v)d1(v)e1(v)d1(u)

)
.

(6.35)
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This is equivalent to(
(u− v)d1(u)f1(v)− s1f1(u)d1(u)

)
e1(u)d1(v)

= f1(v)d1(v)
(
(u− v)d1(u)e1(u)− s1e1(v)d1(u)

)
.

Note that by (6.29), we have
(u− v)d1(u)f1(v)− s1f1(u)d1(u) = f1(v)

(
(u− v)d1(u)− s1d1(u)

)
.

Hence, to prove (6.35), it reduces to show(
(u− v)d1(u)− s1d1(u)

)
e1(u)d1(v) = d1(v)

(
(u− v)d1(u)e1(u)− s1e1(v)d1(u)

)
,

that is
(u− v)d1(u)[d1(v), e1(u)] = s1

(
d1(v)e1(v)d1(u)− d1(u)e1(u)d1(v)

)
.

Applying (6.28) to the LHS, it transforms to
d1(v)[d1(u), e1(v)] = d1(u)[d1(v), e1(u)]

which follows directly from (6.28) by applying it to both sides.
Let us come back to (6.32). By (3.11) with i = l = 1 and j = k = 2 in terms of Gaussian generators, we

have
(u2 − v2)[d1(u)e1(u), f1(v)d1(v)]

= (u+ v)s2
(
d2(u)d1(v) + f1(u)d1(u)e1(u)d1(v)− d2(v)d1(u)− f1(v)d1(v)e1(v)d1(u)

)
+ (u− v)s2

(
d1(u)e13(u)d1(v) + d1(u)e1(u)f1(v)d1(v) + d1(u)f31(v)d1(v)

)
.

Now using (6.35) for [d1(u)e1(u), f1(v)d1(v)] and multiplying d̃1(u), d̃1(v) from the left and the right,
respectively, one finds (6.32).

Equation (6.30) . By (3.11) with i = k = 1 and j = l = 2, we have
[x12(u), x12(v)] = s1(x12(u)x12(v)− x12(v)x12(u)).

There are two cases depending on the parity of |α1|.
(1) If s1 = s2, then we have [x12(u), x12(v)] = 0 which implies that

d1(u)e1(u)d1(v)e1(v) = d1(v)e1(v)d1(u)e1(u).

Using (6.28) to commute d1(u) and e1(v), we have

d1(u)
(
d1(v)e1(u)+

s1
u− v

d1(v)(e1(u)− e1(v))
)
e1(v)

= d1(v)
(
d1(u)e1(v) +

s1
u− v

d1(u)(e1(u)− e1(v))
)
e1(u).

Canceling d1(u)d1(v), we obtain (6.30).
(2) If s1 ̸= s2, then

[x
(1)
12 , x12(v)] = 0 =⇒ [e

(1)
1 , d1(v)e1(v)] = 0. (6.36)

Therefore, we have
d1(v)[e

(1)
1 , e1(v)] = [d1(v), e

(1)
1 ]e1(v). (6.37)

It follows from (6.28) that

[d
(1)
1 , e1(v)] = s1e1(v), (6.38)

[d1(u), e
(1)
1 ] = s1d1(u)e1(u), (6.39)

[d
(2)
1 , e1(v)]− v[d

(1)
1 , e1(v)] = s1d

(1)
1 e1(v)− s1e

(1)
1 . (6.40)

Combining (6.37) and (6.39), we have

[e
(1)
1 , e1(v)] = s1e1(v)

2. (6.41)
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Set d1,1 = d
(2)
1 − 1

2(d
(1)
1 )2 − 1

2s1d
(1)
1 , then it follows from (6.38) and (6.40) that

[d1,1, e1(v)] = s1(ve1(v)− e
(1)
1 ) =⇒ [d1,1, e

(r)
1 ] = s1e

(r+1)
1 . (6.42)

By Lemma 6.8, it suffices to show that [e1(u), e1(v)] = 0, i.e. [e(r)1 , e
(s)
1 ] = 0 for all r, s ∈ N. Considering

the coefficient of v−1 in (6.41), it is immediate that [e(1)1 , e
(1)
1 ] = 0 or (e(1)1 )2 = 0. Similarly,

[e
(1)
1 , e

(2)
1 ] = s1(e

(1)
1 )2 = 0, [e

(1)
1 , e

(3)
1 ] = s1[e

(1)
1 , e

(2)
1 ] = 0. (6.43)

Applying [o1,1, · ] to the first equality of (6.43), we obtain

0 =
[
o1,1, [e

(1)
1 , e

(2)
1 ]

]
= s1[e

(2)
1 , e

(2)
1 ] + s1[e

(1)
1 , e

(3)
1 ].

Hence, by (6.43), we have [e
(2)
1 , e

(2)
1 ] = 0. Now we prove by induction on r + s that [e(r)1 , e

(s)
1 ] = 0 whose

base case is proved above. By induction hypothesis and (6.41), we have

[e
(1)
1 , e

(r+s)
1 ] =

s1
2

r+s−1∑
i=1

[e
(i)
1 , e

(r+s−i)
1 ] = 0. (6.44)

Applying [o1,1, · ] to [e
(r)
1 , e

(s)
1 ] = 0, we have

[e
(r+1)
1 , e

(s)
1 ] + [e

(r)
1 , e

(s+1)
1 ] = 0. (6.45)

The desired statement follows from (6.44) and (6.45).
Equation (6.33) . Taking the coefficients of u in (3.11) with i = 1, j = k = l = 2 in terms of Gaussian

generators, we find that

[e
(1)
1 , d2(v) + f1(v)d1(v)e1(v)] = s2

(
d1(v)e1(v) + f2(v)d2(v) + f31(v)d1(v)e1(v)

)
. (6.46)

It follows from (6.36) that
[e

(1)
1 , d1(v)e1(v)] = 0. (6.47)

Note also that by (6.32) we have

[e
(1)
1 , f1(v)] = s2

(
1− d̃1(v)d2(v) + f31(v)

)
. (6.48)

Combining (6.46), (6.47), and (6.48), we conclude that

[e
(1)
1 , d2(v)] = s2

(
d2(v)e1(v) + f2(v)d2(v)

)
. (6.49)

By Lemma 4.8, we have f2(v) = −e1(−v). Therefore, we find that

d1(u)[e1(u), d2(v)]
(6.27)
= [d1(u)e1(u), d2(v)]

(6.39)
= s1[d1(u), [e

(1)
1 , d2(v)]]

(6.49)
= s1s2[d1(u), d2(v)e1(v) + f2(v)d2(v)]

(6.27)
= s1s2d2(v)[d1(u), e1(v)] + s1s2[d1(u), f2(v)]d2(v)

(6.28)
=

s2
u− v

d2(v)d1(u)
(
e1(v)− e1(u)

)
+

s2
u+ v

d1(u)
(
e1(u) + f2(v)

)
d2(v),

completing the proof of (6.33). □

Lemma 6.16. The coefficients of d1(u+ s1+s2
2 )s1d2(u)

s2d3(u− s2+s3
2 )s3 are central elements in Xs.

Proof. The proof is similar to that of Lemma 6.7. □

Recall bi,r and hi,r for i ∈ {1, 2}, r ∈ N from (4.23), (4.24), and (4.29).
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Proposition 6.17. We have
[hi,r, hj,s] = 0, hi,r = (−1)r+1hτi,r, (6.50)

[bi,r+1, bj,s]− [bi,r, bj,s+1] =
cij
2
{bi,r, bj,s} − 2δi,τj(−1)rsihτi,r+s+1, (6.51)

[hi,r+2, bj,s]− [hi,r, bj,s+2] =
cij − ciτj

2
{hi,r+1, bj,s}

+
cij + ciτj

2
{hi,r, bj,s+1}+

cijcτi,j
4

[hi,r, bj,s]. (6.52)

Here in the last equality we allow r ∈ Z with hi,−1 = 1 and hi,r = 0 for r < −1.

Proof. We give a brief proof; see the proof of [LZ24, Prop. 7.20] for more detail.
The relation (6.50) is clear from (4.26), Lemma 4.10, and the definition of hi,r. The relation (6.51) for

i = j is obvious from (6.30) and (6.31). Then we consider the case (i, j) = (1, 2). It follows from (6.32)
and e1(u) = −f2(−u) (by Lemma 4.8) that

(u− v)[f1(u), f2(v)] ≃ −s1(u− v)

u+ v
d̃2(v)d3(v)− s1f2(v)f1(u),

in the region |u| ≫ |v|. Here we dropped terms like d̃1(u)d2(u), f31(u), e13(−v) and used d̃2(v)d3(v) =
d̃1(−v)d2(−v) from Lemma 4.8. Thus we have(

u− v +
s2
2

)
[b1(u), b2(v)] ≃

(
s1 −

2s1v

u+ v

)
h2(v)− s1b2(v)b1(u),

which implies further

(u− v)[b1(u), b2(v)] ≃ −s2
2

{
b1(u), b2(v)

}
− 2s1v

u+ v
h2(v).

By taking the coefficients of u−r−1v−s−1 with r, s ∈ N, we obtain the relation (6.51) for (i, j) = (1, 2).
We consider the relation (6.52). Note that h1(u) = h2(−u) by (4.26) and the anti-automorphism η sends

b1(u) to a scalar multiple of b2(−u). It suffices to consider the case (i, j) = (1, 1). It follows from (6.29)
and (6.34) that

[d̃1(u)d2(u), f1(v)]

=
s1 + s2
u− v

d̃1(u)(f1(v)− f1(u))d2(u) +
s2

u+ v
d̃1(u)d2(u)(f1(v) + e2(u)).

(6.53)

There are two cases depending on the parity of α1.
(1) If s1 ̸= s2, then c11 = c22 = s1 + s2 = 0 and c12 = c21 = −s2. Thus by (6.53) we have

(u+ v)[h1(u), b1(v)] ≃
s2
2
{h1(u), b1(v)}.

Multiplying it by (u − v) and taking the coefficients of u−r−1v−s−1 with r ∈ Z and s ∈ N, one finds the
relation (6.52) for (i, j) = (1, 1) for this case.

(2) If s1 = s2, then by (6.53) we have

[d̃1(u)d2(u), f1(v)] ≃
s1 + s2
u− v

d̃1(u)f1(v)d2(u) +
s2

u+ v
d̃1(u)d2(u)f1(v), (6.54)

where we dropped terms like d̃1(u)f1(u)d2(u). By (6.29), we find
1

u− v
d̃1(u)f1(v) ≃

1

u− v − s1
f1(v)d̃1(u).

Plugging it into (6.54) and clearing the denominator, we obtain(
u+ v +

s2
2

)(
u− v − s2

)[
h1(u), b1(v)

]
≃ 2s2

(
u+ v +

s2
2

)
b1(v)h1(u) + s2

(
u− v − s2

)
h1(u)b1(v),
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which gives rise to(
u2 − v2

)[
h1(u), b1(v)

]
≃

(3s2
2
u+

s2
2
v
){
h1(u), b1(v)

}
− 1

2
[h1(u), b1(v)].

Taking the coefficients of u−r−1v−s−1 with r ⩾ −2, s ∈ N, one finds the relation (6.52) for (i, j) = (1, 1)
if s1 = s2. □

By Proposition 2.5, we need one more lemma for the Serre relations among generators of degree zero,
which will be sufficient to deduce more general Serre relation (2.7).

Lemma 6.18. We have[
b1,0, [b1,0, b2,0]

]
= 2(1 + s1s2)b1,0,

[
b2,0, [b2,0, b1,0]

]
= 2(1 + s1s2)b2,0.

Proof. We only prove the first relation. The other one is similar or can be obtained by taking the anti-
automorphism η from Lemma 4.11.

It follows from (4.23), (6.32), and Lemma 4.8 that

[b1,0, b2,0] = −[f
(1)
1 , f

(1)
2 ] = −[f

(1)
1 , e

(1)
1 ] = −s1

(
h1,0 −

1

4
− f

(1)
31

)
.

On the other hand, setting i = 2, j = k = 3, l = 1 in (3.11), we find

[x23(u), x31(v)] =
s1

u− v

(
x33(u)x21(v)− x33(v)x21(u)

)
,

which implies further

[b1,0, f
(1)
31 ] =

√
−1 [f

(1)
1 , f

(1)
31 ] =

√
−1 [e

(1)
2 , f

(1)
31 ]

=
√
−1 [x

(1)
23 , x

(1)
31 ] =

√
−1 s1x

(1)
21 =

√
−1 s1f

(1)
1 = s1b1,0.

Since by (6.52) that [h1,0, b1,0] = (s1 + 2s2)b1,0, the first equality follows. □

6.5. Relations in the cas N = 5. To complete, we still need to verify certain Serre relations which reduce
to the case of Xs. This is very similar to Section 6.3. It turns out that the calculations of this case will be
exactly the same as the Yangians Y(gls[m]).

Lemma 6.19. We have the following Serre relations,[
e1(u), [e1(v), e2(w)]

]
+
[
e1(v), [e1(u), e2(w)]

]
= 0,[

e2(u), [e2(v), e1(w)]
]
+
[
e2(v), [e2(u), e1(w)]

]
= 0.

Proof. The lemma above can be proved similarly to Corollary 4.7 as follows. The series e1(u) is expressed
in terms of x11(u) and x12(u) while e2(u) is expressed in terms of x11(u), x13(u), x21(u) and x23(u). Note
that the commutator relations between these series xab(u) are the same as in Y(gls[3]) (with xab(u) replaced by
tab(u)); see (3.1) and (3.11). Thus these Serre relations hold as the same Serre relations hold in Y(gls[3]). □

Remark 6.20. Alternatively, one can prove the lemma following the strategy of [LZ24, Lem. 7.24].

Corollary 6.21. We have the following Serre relations in Xs,[
bi(u), [bi(v), bj(w)]

]
+
[
bi(v), [bi(u), bj(w)]

]
= 0,

for the pairs (i, j) = (1, 2), (2, 1), (3, 4), (4, 3).

Proof. Follows from Lemma 6.19 by applying the anti-automorphism η and Lemma 4.8. □

The Serre relations for the pairs (i, j) = (2, 3), (3, 2) follows from the corresponding relations in Xs
[2,2′]

with the shift homomorphism ψs
1; see Lemma 4.9, Lemma 6.18, and Proposition 2.11.
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