A Summary of Commonly Used Math Notations

- \in : This indicates an element belonging to a set. Example: " 5 is a natural number" can be written as " $5 \in \mathbb{N}$ ". Compare with the subset notation below.
- \subset : This indicates the containment relationship between sets. For instance, " $\{1,2\}$ is a subset of $\{1,2,3,4\}$ " can be abbreviated as $\{1,2\} \subset\{1,2,3,4\}$. There are some variations of this notation, like \supset (containment), \subseteq (subset, may be equal), \supseteq (containment, may be equal), \subsetneq (subset and not equal) \supsetneq. Notice that this is a relationship between sets, while the notation \in is between an element and a set. For instance,

$$
\{5\} \subset\{1,2,3,4,5\}, \quad 5 \in\{1,2,3,4,5\}
$$

both tell you that the element 5 is in the set $\{1,2,3,4,5\}$. But $\{5\} \in\{1,2,3,4,5\}$ is NOT mathematically correct.

- \forall : This means "for any" or "for all." Example: "For any vector v in a vector space V, a scalar multiple of it is still in the vector space" can be written as " $\forall v \in V$, and $\forall c \in \mathbb{F}$, $c v \in \mathbb{F}$."
- \exists : This means "there exists." For example: "For any $\epsilon>0$, there exists a $\delta>0$ such that..." can be written as " $\forall \epsilon>0, \exists \delta>0$ s.t. ..." A negation of this symbol is \nexists, meaning "there does not exist."
- \Rightarrow means the statement before the arrow implies the statement after the arrow. \Leftrightarrow indicates the equivalence of statements.
- \mathbb{N} : the set of natural numbers $\mathbb{N}=\{0,1,2,3,4, \ldots\}$. \mathbb{Z} : the set of integers. \mathbb{Q} : the set of rational numbers (this is the first example of a field). \mathbb{R} : the set of real numbers. \mathbb{C} : the set of complex numbers.
- \sum and Π : meaning taking sum/product of all terms behind the symbol satisfying some conditions. For instance, summing over all natural numbers from 0 to 100 can be written as

$$
0+1+\cdots+100=\sum_{k=0}^{100} k .
$$

- Greek letters : $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \kappa, \lambda$ etc. Used as alternatives for English letters. In math different alphabets are usually used to represent concepts of different nature.
- \cup : union of sets $A \cup B=\{x \mid x \in A$ or $x \in B\}$.
- \cap : intersection of sets $A \cap B=\{x \mid x \in A$ and $x \in B\}$.

