# On the supersymmetric XXX spin chain associated to $\mathfrak{g l}_{1 \mid 1}$ 

Kang Lu

Indiana University Purdue University Indianapolis
joint work with Evgeny Mukhin

$$
01 / 16 / 2020
$$

## Super Yangian $\mathrm{Y}\left(\mathfrak{g l}_{1 \mid 1}\right)$

The super Yangian $\mathrm{Y}\left(\mathfrak{g l}_{1 \mid 1}\right)$ is a unital associative superalgebra.
Generators: $T_{i j}^{(r)}$ of parity $|i|+|j|, i, j=1,2$ and $r \geqslant 1$; Defining relations:
$\mathcal{R}^{(1,2)}\left(x_{1}-x_{2}\right) T^{(1,3)}\left(x_{1}\right) T^{(2,3)}\left(x_{2}\right)=T^{(2,3)}\left(x_{2}\right) T^{(1,3)}\left(x_{1}\right) \mathcal{R}^{(1,2)}\left(x_{1}-x_{2}\right)$,
where $\mathcal{R}(x)=1+\frac{\mathcal{P}}{x}$ ( $\mathcal{P}$ is the super flip operator) and

$$
T(x)=\left(\begin{array}{ll}
T_{11}(x) & T_{12}(x) \\
T_{21}(x) & T_{22}(x)
\end{array}\right), \quad T_{i j}(x)=\delta_{i j}+\sum_{r=1}^{\infty} T_{i j}^{(r)} x^{-r}
$$

Define the Berezinian $\operatorname{Ber}(x)$ [Nazarov91] by

$$
\operatorname{Ber}(x)=T_{11}(x)\left(T_{22}(x)-T_{12}(x) T_{11}^{-1}(x) T_{21}(x)\right)^{-1}
$$

The coefficients of Berezinian generate the center of $\mathrm{Y}\left(\mathfrak{g l}_{1 \mid 1}\right)$ [Gow06].

## Transfer matrices

In XXX spin chains, we study the spectrum of the action of transfer matrices on finite-dimensional irreducible $\mathrm{Y}\left(\mathfrak{g l}_{1 \mid 1}\right)$-modules. We focus on the first transfer matrix.

The (first) transfer matrix $\mathcal{T}(x)$ is

$$
\mathcal{T}(x)=\operatorname{str}(T(x))=T_{11}(x)-T_{22}(x)
$$

The transfer matrix $\mathcal{T}(x)$ satisfies

$$
\left[\mathcal{T}\left(x_{1}\right), \mathcal{T}\left(x_{2}\right)\right]=0 \quad \text { and } \quad\left[\mathcal{T}\left(x_{1}\right), T_{i j}^{(1)}\right]=0
$$

Our goal is to

- find eigenvectors and corresponding eigenvalues of $\mathcal{T}(x)$;
- determine the dimension of each eigenspace;
- determine the size of each Jordan block.


## Algebraic Bethe ansatz I

Let $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \cdots, \lambda^{(k)}\right)$ be a sequence of pairs of complex numbers. Let $\boldsymbol{b}=\left(b_{1}, \cdots, b_{k}\right)$ be a sequence of complex numbers. Consider an irreducible tensor product of evaluation modules $\otimes_{s=1}^{k} V_{\lambda^{(s)}}\left(b_{s}\right)$. Then

$$
\phi_{\boldsymbol{\lambda}, \boldsymbol{b}}(x)=\prod_{s=1}^{k}\left(x-b_{s}+\lambda_{1}^{(s)}\right), \quad \psi_{\boldsymbol{\lambda}, \boldsymbol{b}}(x)=\prod_{s=1}^{k}\left(x-b_{s}-\lambda_{2}^{(s)}\right) .
$$

are relatively prime [Zhang95].
Let $\boldsymbol{t}=\left(t_{1}, \cdots, t_{l}\right)$ be a sequence of complex numbers. Define the off-shell Bethe vector $\mathbb{B}_{l}(t)$ by

$$
\mathbb{B}_{l}(\boldsymbol{t})=\prod_{i=1}^{l} \prod_{s=1}^{k}\left(t_{i}-b_{s}\right) \prod_{1 \leqslant i<j \leqslant l} \frac{1}{t_{j}-t_{i}+1} T_{12}\left(t_{1}\right) \cdots T_{12}\left(t_{l}\right)|0\rangle
$$

Note that $\mathbb{B}_{l}(\boldsymbol{t})$ is symmetric in $\boldsymbol{t}$.

## Algebraic Bethe ansatz II

Let $y(x)=\left(x-t_{1}\right) \cdots\left(x-t_{l}\right)$. If

$$
y(x) \text { divides } \phi_{\boldsymbol{\lambda}, \boldsymbol{b}}(x)-\psi_{\boldsymbol{\lambda}, \boldsymbol{b}}(x),
$$

we call $\mathbb{B}_{l}(\boldsymbol{t})$ an on-shell Bethe vector.

## Proposition [Kulish85, Belliard-Ragoucy09]

If an on-shell Bethe vector $\mathbb{B}_{l}(\boldsymbol{t})$ is nonzero, then $\mathbb{B}_{l}(\boldsymbol{t})$ is an eigenvector of $\mathcal{T}(x)$ with eigenvalue $\mathcal{E}_{\boldsymbol{\lambda}, \boldsymbol{b}, \boldsymbol{t}}(x)=\frac{\phi_{\boldsymbol{\lambda}, \boldsymbol{b}}(x)-\psi_{\boldsymbol{\lambda}, \boldsymbol{b}}(x)}{\prod_{s=1}^{k}\left(x-b_{s}\right)} \frac{y(x-1)}{y(x)}$.

Direct computation implies that
$\mathcal{T}(x) \mathbb{B}_{l}(\boldsymbol{t})=\mathcal{E}_{\boldsymbol{\lambda}, \boldsymbol{b}, \boldsymbol{t}}(x) \mathbb{B}_{l}(\boldsymbol{t})+\sum_{i=1}^{l} \frac{\phi_{\boldsymbol{\lambda}, \boldsymbol{b}}\left(t_{i}\right)-\psi_{\boldsymbol{\lambda}, \boldsymbol{b}}\left(t_{i}\right)}{y^{\prime}\left(t_{i}\right)} \frac{y(x-1)}{\left(x-t_{i}\right)\left(x-t_{i}-1\right)} \mathbb{B}_{l}\left(\boldsymbol{t}_{i}, x\right)$.
Similarly, one shows $e_{12} \mathbb{B}_{l}(\boldsymbol{t})=0$.

Completeness: Does this construction give all eigenvectors of $\mathcal{T}(x)$ in $\left(\otimes_{s=1}^{k} V_{\lambda^{(s)}}\right)^{\text {sing }}$ ? Generically, it works well and is well-known.

## Theorem [L-Mukhin]

Suppose all $\lambda^{(s)}$ are polynomial $\mathfrak{g l}_{1 \mid 1}$ weights and $\otimes_{s=1}^{k} V_{\lambda^{(s)}}\left(b_{s}\right)$ is cyclic. Then

- Each eigenspace in $\left(\bigotimes_{s=1}^{k} V_{\lambda^{(s)}}\left(b_{s}\right)\right)^{\text {sing }}$ of $\mathcal{T}(x)$ is 1-dimensional.
- Eigenspaces of $\mathcal{T}(x)$ bijectively correspond to monic divisors $y$ of $\phi_{\lambda, b}-\psi_{\lambda, b}$.
- The size of Jordan block corresponding to $y$ is

$$
\prod_{a \in \mathbb{C}}\binom{\operatorname{Mult}_{a}\left(\hat{\phi}_{\lambda, b}-\psi_{\lambda, b}\right)}{\operatorname{Mult}_{a}(y)}
$$

where $\operatorname{Mult}_{a}(f)$ is the multiplicity of $a$ as a root of $f$.

- If $\bigotimes_{s=1}^{k} V_{\lambda^{(s)}}\left(b_{s}\right)$ is irreducible, then all on-shell Bethe vectors are nonzero.


## Higher transfer matrices

## Theorem [L-Mukhin]

We have

$$
\begin{aligned}
& \prod_{i=1}^{n} \mathcal{T}(x-i+1) \\
= & \operatorname{str}\left(A_{n} T^{(1)}(x) T^{(2)}(x-1) \cdots T^{(n)}(x-n+1)\right) \prod_{i=1}^{n-1}(1-\operatorname{Ber}(x-i)) \\
= & \operatorname{str}\left(H_{n} T^{(1)}(x) T^{(2)}(x-1) \cdots T^{(n)}(x-n+1)\right) \prod_{i=1}^{n-1}\left(1-\operatorname{Ber}^{-1}(x-i)\right)
\end{aligned}
$$

Hence higher transfer matrices can be "expressed" in terms of the first transfer matrix and the center.

These formulas can be understood as follows.

We have the following equality in Grothendieck ring,

$$
V_{n \omega_{1}}(x) \otimes V_{\omega_{1}}(x-n)=V_{(n+1) \omega_{1}}(x)+\left(\mathbb{C}_{(-1,1)}^{\text {odd }}(x-n) \otimes V_{(n+1) \omega_{1}}(x)\right) .
$$

Inductively, we have the equality in Grothendieck ring,

$$
\bigotimes_{i=1}^{n} V_{\omega_{1}}(x-i+1)=\sum_{\ell=0}^{n-1} \sum_{1 \leqslant i_{1}<\cdots<i_{\ell} \leqslant n-1} \mathbb{C}_{i_{1}, \cdots, i_{\ell}} \otimes V_{n \omega_{1}}(x),
$$

where

$$
\mathbb{C}_{i_{1}, \cdots, i_{\ell}}=\bigotimes_{j=1}^{\ell} \mathbb{C}_{(-1,1)}^{\mathrm{odd}}\left(x-i_{j}\right)
$$

## Thank you!

